These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21367499)

  • 1. New insights into the sorption mechanism of cadmium on red mud.
    Luo L; Ma C; Ma Y; Zhang S; Lv J; Cui M
    Environ Pollut; 2011 May; 159(5):1108-13. PubMed ID: 21367499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.
    Xue Y; Hou H; Zhu S
    J Hazard Mater; 2009 Feb; 162(1):391-401. PubMed ID: 18579295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary.
    Burke IT; Mayes WM; Peacock CL; Brown AP; Jarvis AP; Gruiz K
    Environ Sci Technol; 2012 Mar; 46(6):3085-92. PubMed ID: 22324637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Cd(II) sorption by red mud with heat treatment: Performance and mechanisms of sorption.
    Yang T; Wang Y; Sheng L; He C; Sun W; He Q
    J Environ Manage; 2020 Feb; 255():109866. PubMed ID: 31759202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils.
    Appel C; Ma L
    J Environ Qual; 2002; 31(2):581-9. PubMed ID: 11931450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray absorption spectroscopic investigation of molybdenum multinuclear sorption mechanism at the Goethite-water interface.
    Arai Y
    Environ Sci Technol; 2010 Nov; 44(22):8491-6. PubMed ID: 20964355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical modeling of cadmium sorption to soil as a function of soil properties.
    Choi J
    Chemosphere; 2006 Jun; 63(11):1824-34. PubMed ID: 16330079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential sorption of lead and cadmium in three tropical soils.
    Appel C; Ma LQ; Rhue RD; Reve W
    Environ Pollut; 2008 Sep; 155(1):132-40. PubMed ID: 18069107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural materials for treatment of industrial effluents: comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. Part I: batch experiments.
    Gómez del Río JA; Morando PJ; Cicerone DS
    J Environ Manage; 2004 Jun; 71(2):169-77. PubMed ID: 15135950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd(2+) and Pb(2+) removal by mango peel waste.
    Iqbal M; Saeed A; Zafar SI
    J Hazard Mater; 2009 May; 164(1):161-71. PubMed ID: 18799258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of cadmium from aqueous solutions by palygorskite.
    Alvarez-Ayuso E; García-Sánchez A
    J Hazard Mater; 2007 Aug; 147(1-2):594-600. PubMed ID: 17367922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of XAFS to Distinguish between Inner- and Outer-Sphere Lead Adsorption Complexes on Montmorillonite.
    Strawn DG; Sparks DL
    J Colloid Interface Sci; 1999 Aug; 216(2):257-269. PubMed ID: 10421733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-phase cadmium speciation in soil using L3-edge XANES spectroscopy with partial least-squares regression.
    Siebers N; Kruse J; Eckhardt KU; Hu Y; Leinweber P
    J Synchrotron Radiat; 2012 Jul; 19(Pt 4):579-85. PubMed ID: 22713893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite.
    Zhang Z; Li M; Chen W; Zhu S; Liu N; Zhu L
    Environ Pollut; 2010 Feb; 158(2):514-9. PubMed ID: 19783084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium solubility and sorption in a long-term sludge-amended arable soil.
    Bergkvist P; Berggren D; Jarvis N
    J Environ Qual; 2005; 34(5):1530-8. PubMed ID: 16091605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal Changes in Cadmium Speciation in Brazilian Soils Evaluated Using Cd LIII-Edge XANES and Chemical Fractionation.
    Colzato M; Kamogawa MY; Carvalho HWP; Alleoni LRF; Hesterberg D
    J Environ Qual; 2017 Nov; 46(6):1206-1214. PubMed ID: 29293850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste.
    Martínez M; Miralles N; Hidalgo S; Fiol N; Villaescusa I; Poch J
    J Hazard Mater; 2006 May; 133(1-3):203-11. PubMed ID: 16310940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal.
    Memon JR; Memon SQ; Bhanger MI; Memon GZ; El-Turki A; Allen GC
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):260-5. PubMed ID: 18760572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of sorption processes and FT-IR analysis of arsenate sorbed onto red muds (a bauxite ore processing waste).
    Castaldi P; Silvetti M; Enzo S; Melis P
    J Hazard Mater; 2010 Mar; 175(1-3):172-8. PubMed ID: 19853993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption behavior of Pb(II) and Cd(II) on iron ore slime and characterization of metal ion loaded sorbent.
    Mohapatra M; Rout K; Mohapatra BK; Anand S
    J Hazard Mater; 2009 Jul; 166(2-3):1506-13. PubMed ID: 19185424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.