These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21367653)

  • 1. Detection of adulteration in acetonitrile.
    Chen G; Fujimori K; Lee H; Nashed-Samuel Y; Phillips J; Rogers G; Shen H; Yee C
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1646-50. PubMed ID: 21367653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of adulteration in honey using near-infrared spectroscopy].
    Chen LZ; Zhao J; Ye ZH; Zhong YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2565-8. PubMed ID: 19271491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy.
    Lohumi S; Lee S; Lee WH; Kim MS; Mo C; Bae H; Cho BK
    J Agric Food Chem; 2014 Sep; 62(38):9246-51. PubMed ID: 25188555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of geographical origin and adulteration of radix astragali using fourier transform infrared spectroscopy and chemometric methods.
    Zhang L; Nie L
    Phytochem Anal; 2010; 21(6):609-15. PubMed ID: 20602337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical methods for the evaluation of melamine contamination.
    Cantor SL; Gupta A; Khan MA
    J Pharm Sci; 2014 Feb; 103(2):539-44. PubMed ID: 24327168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques.
    Yang H; Irudayaraj J
    J Pharm Pharmacol; 2002 Sep; 54(9):1247-55. PubMed ID: 12356279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary supplement oil classification and detection of adulteration using Fourier transform infrared spectroscopy.
    Ozen BF; Weiss I; Mauer LJ
    J Agric Food Chem; 2003 Sep; 51(20):5871-6. PubMed ID: 13129287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species.
    Nicolaou N; Xu Y; Goodacre R
    J Dairy Sci; 2010 Dec; 93(12):5651-60. PubMed ID: 21094736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy.
    Oliveira FC; Brandão CR; Ramalho HF; da Costa LA; Suarez PA; Rubim JC
    Anal Chim Acta; 2007 Mar; 587(2):194-9. PubMed ID: 17386773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of degradation products of citalopram and process-related impurities using RP-HPLC.
    Rao RN; Raju AN; Narsimha R
    J Sep Sci; 2008 Jun; 31(10):1729-38. PubMed ID: 18481321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy.
    Kuriakose S; Thankappan X; Joe H; Venkataraman V
    Analyst; 2010 Oct; 135(10):2676-81. PubMed ID: 20820490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of sugar adulterants in apple juice using fourier transform infrared spectroscopy and chemometrics.
    Kelly JF; Downey G
    J Agric Food Chem; 2005 May; 53(9):3281-6. PubMed ID: 15853360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and accurate determination of VFAs and ethanol in the effluent of an anaerobic H(2)-producing bioreactor using near-infrared spectroscopy.
    Zhang ML; Sheng GP; Mu Y; Li WH; Yu HQ; Harada H; Li YY
    Water Res; 2009 Apr; 43(7):1823-30. PubMed ID: 19223056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents.
    Yip J; Chen M; Szeto YS; Yan S
    Bioresour Technol; 2009 Dec; 100(24):6674-8. PubMed ID: 19679467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of jaggery syrup in honey using near-infrared spectroscopy.
    Mishra S; Kamboj U; Kaur H; Kapur P
    Int J Food Sci Nutr; 2010 May; 61(3):306-15. PubMed ID: 20109130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of different forms of cocaine and substances used in adulteration using near-infrared Raman spectroscopy and infrared absorption spectroscopy.
    Penido CA; Pacheco MT; Zângaro RA; Silveira L
    J Forensic Sci; 2015 Jan; 60(1):171-8. PubMed ID: 25428273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and quantification of species authenticity and adulteration in crabmeat using visible and near-infrared spectroscopy.
    Gayo J; Hale SA
    J Agric Food Chem; 2007 Feb; 55(3):585-92. PubMed ID: 17263445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of synthetic polymers and speck impurities in cellulose pulp: a comparison between pyrolysis-gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy.
    Silvério FO; Barbosa LC; Maltha CR; Piló-Veloso D
    Anal Chim Acta; 2009 Jun; 643(1-2):108-16. PubMed ID: 19446071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform infrared study of lipoxygenase conformation in organic solvent media.
    Vega M; Ismail A; Sedman J; Kermasha S
    Appl Spectrosc; 2006 Feb; 60(2):168-73. PubMed ID: 16542568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of FTIR for rapid authentication and detection of adulteration of food.
    Rodriguez-Saona LE; Allendorf ME
    Annu Rev Food Sci Technol; 2011; 2():467-83. PubMed ID: 22129392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.