These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21367868)

  • 1. eCEO: an efficient Cloud Epistasis cOmputing model in genome-wide association study.
    Wang Z; Wang Y; Tan KL; Wong L; Agrawal D
    Bioinformatics; 2011 Apr; 27(8):1045-51. PubMed ID: 21367868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An empirical comparison of several recent epistatic interaction detection methods.
    Wang Y; Liu G; Feng M; Wong L
    Bioinformatics; 2011 Nov; 27(21):2936-43. PubMed ID: 21903628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting epistatic effects in association studies at a genomic level based on an ensemble approach.
    Li J; Horstman B; Chen Y
    Bioinformatics; 2011 Jul; 27(13):i222-9. PubMed ID: 21685074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies.
    Ma L; Runesha HB; Dvorkin D; Garbe JR; Da Y
    BMC Bioinformatics; 2008 Jul; 9():315. PubMed ID: 18644146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Exhaustive Scan Method for SNP Main Effects and SNP × SNP Interactions Over Highly Homozygous Genomes.
    Tsai SF; Tung CW; Tsai CA; Liao CT
    J Comput Biol; 2017 Dec; 24(12):1254-1264. PubMed ID: 29099245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women.
    Fergus P; Montanez CC; Abdulaimma B; Lisboa P; Chalmers C; Pineles B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):668-678. PubMed ID: 30183645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs.
    Lee S; Xing EP
    Bioinformatics; 2012 Jun; 28(12):i137-46. PubMed ID: 22689753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene-Gene Interactions Detection Using a Two-stage Model.
    Wang Z; Sul JH; Snir S; Lozano JA; Eskin E
    J Comput Biol; 2015 Jun; 22(6):563-76. PubMed ID: 25871811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eigen-Epistasis for detecting gene-gene interactions.
    Stanislas V; Dalmasso C; Ambroise C
    BMC Bioinformatics; 2017 Jan; 18(1):54. PubMed ID: 28114904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potpourri: An Epistasis Test Prioritization Algorithm via Diverse SNP Selection.
    Caylak G; Tastan O; Cicek AE
    J Comput Biol; 2021 Apr; 28(4):365-377. PubMed ID: 33275856
    [No Abstract]   [Full Text] [Related]  

  • 16. EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits.
    Arkin Y; Rahmani E; Kleber ME; Laaksonen R; März W; Halperin E
    Bioinformatics; 2014 Jun; 30(12):i19-25. PubMed ID: 24931983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing.
    Zhao S; Prenger K; Smith L; Messina T; Fan H; Jaeger E; Stephens S
    BMC Genomics; 2013 Jun; 14():425. PubMed ID: 23802613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting genome-wide epistases based on the clustering of relatively frequent items.
    Xie M; Li J; Jiang T
    Bioinformatics; 2012 Jan; 28(1):5-12. PubMed ID: 22053078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FastEpistasis: a high performance computing solution for quantitative trait epistasis.
    Schüpbach T; Xenarios I; Bergmann S; Kapur K
    Bioinformatics; 2010 Jun; 26(11):1468-9. PubMed ID: 20375113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS.
    Niel C; Sinoquet C; Dina C; Rocheleau G
    Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.