These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21367922)

  • 1. A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney.
    Gardiner BS; Smith DW; O'Connor PM; Evans RG
    Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1339-52. PubMed ID: 21367922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusive oxygen shunting between vessels in the preglomerular renal vasculature: anatomic observations and computational modeling.
    Gardiner BS; Thompson SL; Ngo JP; Smith DW; Abdelkader A; Broughton BR; Bertram JF; Evans RG
    Am J Physiol Renal Physiol; 2012 Sep; 303(5):F605-18. PubMed ID: 22674022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pseudo-three-dimensional model for quantification of oxygen diffusion from preglomerular arteries to renal tissue and renal venous blood.
    Lee CJ; Ngo JP; Kar S; Gardiner BS; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F237-F253. PubMed ID: 28381464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal oxygenation: preglomerular vasculature is an unlikely contributor to renal oxygen shunting.
    Olgac U; Kurtcuoglu V
    Am J Physiol Renal Physiol; 2015 Apr; 308(7):F671-88. PubMed ID: 25503734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal arteriovenous oxygen shunting.
    Kuo W; Kurtcuoglu V
    Curr Opin Nephrol Hypertens; 2017 Jul; 26(4):290-295. PubMed ID: 28399018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis.
    Evans RG; Gardiner BS; Smith DW; O'Connor PM
    Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1259-70. PubMed ID: 18550645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation.
    Leong CL; Anderson WP; O'Connor PM; Evans RG
    Am J Physiol Renal Physiol; 2007 Jun; 292(6):F1726-33. PubMed ID: 17327497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney.
    Ngo JP; Kar S; Kett MM; Gardiner BS; Pearson JT; Smith DW; Ludbrook J; Bertram JF; Evans RG
    Am J Physiol Renal Physiol; 2014 Nov; 307(10):F1111-22. PubMed ID: 25209866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of tissue PO2 in the face of altered perfusion: a phenomenon specific to the renal cortex and independent of resting renal oxygen consumption.
    Evans RG; Goddard D; Eppel GA; O'Connor PM
    Clin Exp Pharmacol Physiol; 2011 Apr; 38(4):247-54. PubMed ID: 21306412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rabbits.
    Evans RG; Eppel GA; Michaels S; Burke SL; Nematbakhsh M; Head GA; Carroll JF; O'Connor PM
    Am J Physiol Renal Physiol; 2010 May; 298(5):F1235-43. PubMed ID: 20200093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem?
    O'Connor PM; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2010 Sep; 299(3):R723-7. PubMed ID: 20660108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance.
    Ngo JP; Ow CP; Gardiner BS; Kar S; Pearson JT; Smith DW; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2016 Nov; 311(5):R797-R810. PubMed ID: 27488891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal preglomerular arterial-venous O2 shunting is a structural anti-oxidant defence mechanism of the renal cortex.
    O'Connor PM; Anderson WP; Kett MM; Evans RG
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):637-41. PubMed ID: 16789933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology.
    Evans RG; Ince C; Joles JA; Smith DW; May CN; O'Connor PM; Gardiner BS
    Clin Exp Pharmacol Physiol; 2013 Feb; 40(2):106-22. PubMed ID: 23167537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors that render the kidney susceptible to tissue hypoxia in hypoxemia.
    Evans RG; Goddard D; Eppel GA; O'Connor PM
    Am J Physiol Regul Integr Comp Physiol; 2011 Apr; 300(4):R931-40. PubMed ID: 21248306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow.
    O'Connor PM; Kett MM; Anderson WP; Evans RG
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F688-94. PubMed ID: 16219913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal oxygen delivery: matching delivery to metabolic demand.
    O'Connor PM
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):961-7. PubMed ID: 17002675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats.
    Legrand M; Almac E; Mik EG; Johannes T; Kandil A; Bezemer R; Payen D; Ince C
    Am J Physiol Renal Physiol; 2009 May; 296(5):F1109-17. PubMed ID: 19225052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen transport across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1042-55. PubMed ID: 12181134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal oxygenation in acute renal ischemia-reperfusion injury.
    Abdelkader A; Ho J; Ow CP; Eppel GA; Rajapakse NW; Schlaich MP; Evans RG
    Am J Physiol Renal Physiol; 2014 May; 306(9):F1026-38. PubMed ID: 24598805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.