These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21368000)

  • 21. A neural network model for the acquisition of a spatial body scheme through sensorimotor interaction.
    Roschin VY; Frolov AA; Burnod Y; Maier MA
    Neural Comput; 2011 Jul; 23(7):1821-34. PubMed ID: 21492015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of proprioceptive acuity variability on motor adaptation in older adults.
    Lei Y; Wang J
    Exp Brain Res; 2018 Feb; 236(2):599-608. PubMed ID: 29255917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retention of proprioceptive recalibration following visuomotor adaptation.
    Nourouzpour N; Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2015 Mar; 233(3):1019-29. PubMed ID: 25537467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intermanual transfer and proprioceptive recalibration following training with translated visual feedback of the hand.
    Mostafa AA; Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2014 Jun; 232(6):1639-51. PubMed ID: 24468724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace.
    Marini F; Squeri V; Morasso P; Konczak J; Masia L
    PLoS One; 2016; 11(8):e0161155. PubMed ID: 27536882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Somatosensory perceptual training enhances motor learning by observing.
    McGregor HR; Cashaback JGA; Gribble PL
    J Neurophysiol; 2018 Dec; 120(6):3017-3025. PubMed ID: 30230990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastic changes in hand proprioception following force-field motor learning.
    Goble DJ; Anguera JA
    J Neurophysiol; 2010 Sep; 104(3):1213-5. PubMed ID: 20610787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does proprioceptive acuity influence the extent of implicit sensorimotor adaptation in young and older adults?
    Vandevoorde K; Orban de Xivry JJ
    J Neurophysiol; 2021 Oct; 126(4):1326-1344. PubMed ID: 34346739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Movement related activity in the μ band of the human EEG during a robot-based proprioceptive task.
    Marini F; Zenzeri J; Pippo V; Morasso P; Campus C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1019-1024. PubMed ID: 31374763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of the cross-sensory error signal in visuomotor adaptation.
    Salomonczyk D; Cressman EK; Henriques DY
    Exp Brain Res; 2013 Jul; 228(3):313-25. PubMed ID: 23708802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proprioceptive deficits in inactive older adults are not reflected in fast targeted reaching movements.
    Kitchen NM; Miall RC
    Exp Brain Res; 2019 Feb; 237(2):531-545. PubMed ID: 30478636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of proprioceptive integration in the motor cortex shapes human motor learning.
    Rosenkranz K; Rothwell JC
    J Neurosci; 2012 Jun; 32(26):9000-6. PubMed ID: 22745499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cerebellum is not necessary for visually driven recalibration of hand proprioception.
    Henriques DY; Filippopulos F; Straube A; Eggert T
    Neuropsychologia; 2014 Nov; 64():195-204. PubMed ID: 25278133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of proprioceptive state on learning control of reach dynamics.
    Green AM; Labelle JP
    Exp Brain Res; 2015 Oct; 233(10):2961-75. PubMed ID: 26169102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement.
    Goble DJ; Brown SH
    Exp Brain Res; 2007 Jul; 180(4):693-704. PubMed ID: 17297548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visuo-proprioceptive interactions during adaptation of the human reach.
    Judkins T; Scheidt RA
    J Neurophysiol; 2014 Feb; 111(4):868-87. PubMed ID: 24259549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cerebellum contributes to proprioception during motion.
    Weeks HM; Therrien AS; Bastian AJ
    J Neurophysiol; 2017 Aug; 118(2):693-702. PubMed ID: 28404825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motor learning without moving: Proprioceptive and predictive hand localization after passive visuoproprioceptive discrepancy training.
    Mostafa AA; 't Hart BM; Henriques DYP
    PLoS One; 2019; 14(8):e0221861. PubMed ID: 31465524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.
    Eikema DJ; Chien JH; Stergiou N; Myers SA; Scott-Pandorf MM; Bloomberg JJ; Mukherjee M
    Exp Brain Res; 2016 Feb; 234(2):511-22. PubMed ID: 26525712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.