These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21368001)

  • 21. Adapting gait with asymmetric visual feedback affects deadaptation but not adaptation in healthy young adults.
    Brinkerhoff SA; Monaghan PG; Roper JA
    PLoS One; 2021; 16(2):e0247706. PubMed ID: 33630934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    J R Soc Interface; 2015 Sep; 12(110):0542. PubMed ID: 26289658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Split-belt walking: An experience that is hard to forget.
    Buurke TJW; Sharma N; Swart SB; van der Woude LHV; den Otter R; Lamoth CJC
    Gait Posture; 2022 Sep; 97():184-187. PubMed ID: 35986959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Split-belt treadmill adaptation shows different functional networks for fast and slow human walking.
    Vasudevan EV; Bastian AJ
    J Neurophysiol; 2010 Jan; 103(1):183-91. PubMed ID: 19889853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limping on split-belt treadmills implies opposite kinematic and dynamic lower limb asymmetries.
    Tesio L; Malloggi C; Malfitano C; Coccetta CA; Catino L; Rota V
    Int J Rehabil Res; 2018 Dec; 41(4):304-315. PubMed ID: 30303831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation.
    Sato S; Choi JT
    J Neurophysiol; 2019 Sep; 122(3):1097-1109. PubMed ID: 31339832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematic comparison of split-belt and single-belt treadmill walking and the effects of accommodation.
    Altman AR; Reisman DS; Higginson JS; Davis IS
    Gait Posture; 2012 Feb; 35(2):287-91. PubMed ID: 22015048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using asymmetry to your advantage: learning to acquire and accept external assistance during prolonged split-belt walking.
    Sánchez N; Simha SN; Donelan JM; Finley JM
    J Neurophysiol; 2021 Feb; 125(2):344-357. PubMed ID: 33296612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visuomotor errors drive step length and step time adaptation during 'virtual' split-belt walking: the effects of reinforcement feedback.
    Sato S; Cui A; Choi JT
    Exp Brain Res; 2022 Feb; 240(2):511-523. PubMed ID: 34816293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contributions of spatial and temporal control of step length symmetry in the transfer of locomotor adaptation from a motorized to a non-motorized split-belt treadmill.
    Gregory DL; Sup FC; Choi JT
    R Soc Open Sci; 2021 Feb; 8(2):202084. PubMed ID: 33972880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Everyday multitasking habits: University students seamlessly text and walk on a split-belt treadmill.
    Hinton DC; Cheng YY; Paquette C
    Gait Posture; 2018 Jan; 59():168-173. PubMed ID: 29032000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adjusting gait step-by-step: Brain activation during split-belt treadmill walking.
    Hinton DC; Thiel A; Soucy JP; Bouyer L; Paquette C
    Neuroimage; 2019 Nov; 202():116095. PubMed ID: 31430533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen consumption, oxygen cost, heart rate, and perceived effort during split-belt treadmill walking in young healthy adults.
    Roper JA; Stegemöller EL; Tillman MD; Hass CJ
    Eur J Appl Physiol; 2013 Mar; 113(3):729-34. PubMed ID: 23011122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of dual-tasking on temporal gait adaptation and de-adaptation to the split-belt treadmill in older adults.
    Conradsson D; Hinton DC; Paquette C
    Exp Gerontol; 2019 Oct; 125():110655. PubMed ID: 31299212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time feedback control of split-belt ratio to induce targeted step length asymmetry.
    Carr S; Rasouli F; Kim SH; Reed KB
    J Neuroeng Rehabil; 2022 Jun; 19(1):65. PubMed ID: 35773672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gait asymmetry during early split-belt walking is related to perception of belt speed difference.
    Hoogkamer W; Bruijn SM; Potocanac Z; Van Calenbergh F; Swinnen SP; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1705-12. PubMed ID: 26203114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel optic flow pattern speeds split-belt locomotor adaptation.
    Finley JM; Statton MA; Bastian AJ
    J Neurophysiol; 2014 Mar; 111(5):969-76. PubMed ID: 24335220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The energy cost of split-belt walking for a variety of belt speed combinations.
    Butterfield JK; Collins SH
    J Biomech; 2022 Feb; 132():110905. PubMed ID: 34998181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does dual task placement and duration affect split-belt treadmill adaptation?
    Hinton DC; Conradsson D; Bouyer L; Paquette C
    Gait Posture; 2020 Jan; 75():115-120. PubMed ID: 31675553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.
    Yokoyama H; Sato K; Ogawa T; Yamamoto SI; Nakazawa K; Kawashima N
    PLoS One; 2018; 13(4):e0194875. PubMed ID: 29694404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.