These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21368146)

  • 41. Impacts of historical ditching on peat volume and carbon in northern Minnesota USA peatlands.
    Krause L; McCullough KJ; Kane ES; Kolka RK; Chimner RA; Lilleskov EA
    J Environ Manage; 2021 Oct; 296():113090. PubMed ID: 34256296
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia.
    Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S
    Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change.
    Fan Z; David McGuire A; Turetsky MR; Harden JW; Michael Waddington J; Kane ES
    Glob Chang Biol; 2013 Feb; 19(2):604-20. PubMed ID: 23504796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska.
    Lyu Z; Genet H; He Y; Zhuang Q; McGuire AD; Bennett A; Breen A; Clein J; Euskirchen ES; Johnson K; Kurkowski T; Pastick NJ; Rupp TS; Wylie BK; Zhu Z
    Ecol Appl; 2018 Sep; 28(6):1377-1395. PubMed ID: 29808543
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios.
    Juottonen H; Eiler A; Biasi C; Tuittila ES; Yrjälä K; Fritze H
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27913414
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The development of Hani peatland in the Changbai mountains (NE China) and its response to the variations of the East Asian summer monsoon.
    Zhang M; Bu Z; Jiang M; Wang S; Liu S; Chen X; Hao J; Liao W
    Sci Total Environ; 2019 Nov; 692():818-832. PubMed ID: 31539988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic.
    Treat CC; Marushchak ME; Voigt C; Zhang Y; Tan Z; Zhuang Q; Virtanen TA; Räsänen A; Biasi C; Hugelius G; Kaverin D; Miller PA; Stendel M; Romanovsky V; Rivkin F; Martikainen PJ; Shurpali NJ
    Glob Chang Biol; 2018 Nov; 24(11):5188-5204. PubMed ID: 30101501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland.
    Zhao J; Peichl M; Nilsson MB
    Glob Chang Biol; 2016 Feb; 22(2):750-62. PubMed ID: 26452333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.
    Nijp JJ; Limpens J; Metselaar K; Peichl M; Nilsson MB; van der Zee SE; Berendse F
    Glob Chang Biol; 2015 Jun; 21(6):2309-20. PubMed ID: 25580711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Global peatland initiation driven by regionally asynchronous warming.
    Morris PJ; Swindles GT; Valdes PJ; Ivanovic RF; Gregoire LJ; Smith MW; Tarasov L; Haywood AM; Bacon KL
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4851-4856. PubMed ID: 29666256
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regional variation in the biogeochemical and physical characteristics of natural peatland pools.
    Turner TE; Billett MF; Baird AJ; Chapman PJ; Dinsmore KJ; Holden J
    Sci Total Environ; 2016 Mar; 545-546():84-94. PubMed ID: 26745296
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.
    Hicks Pries CE; van Logtestijn RS; Schuur EA; Natali SM; Cornelissen JH; Aerts R; Dorrepaal E
    Glob Chang Biol; 2015 Dec; 21(12):4508-19. PubMed ID: 26150277
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peatland hydrology and carbon release: why small-scale process matters.
    Holden J
    Philos Trans A Math Phys Eng Sci; 2005 Dec; 363(1837):2891-913. PubMed ID: 16286296
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Age, extent and carbon storage of the central Congo Basin peatland complex.
    Dargie GC; Lewis SL; Lawson IT; Mitchard ET; Page SE; Bocko YE; Ifo SA
    Nature; 2017 Feb; 542(7639):86-90. PubMed ID: 28077869
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Drought-induced reduction in methane fluxes and its hydrothermal sensitivity in alpine peatland.
    Wu H; Yan L; Li Y; Zhang K; Hao Y; Wang J; Zhang X; Yan Z; Zhang Y; Kang X
    PeerJ; 2020; 8():e8874. PubMed ID: 32274271
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using
    Shi Y; Wang Z; He C; Zhang X; Sheng L; Ren X
    Sci Rep; 2017 Jan; 7():40848. PubMed ID: 28098207
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ecosystem state shifts during long-term development of an Amazonian peatland.
    Swindles GT; Morris PJ; Whitney B; Galloway JM; Gałka M; Gallego-Sala A; Macumber AL; Mullan D; Smith MW; Amesbury MJ; Roland TP; Sanei H; Patterson RT; Sanderson N; Parry L; Charman DJ; Lopez O; Valderamma E; Watson EJ; Ivanovic RF; Valdes PJ; Turner TE; Lähteenoja O
    Glob Chang Biol; 2018 Feb; 24(2):738-757. PubMed ID: 29055083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial Community Structure and Methane Cycling Potential along a Thermokarst Pond-Peatland Continuum.
    Vigneron A; Cruaud P; Bhiry N; Lovejoy C; Vincent WF
    Microorganisms; 2019 Oct; 7(11):. PubMed ID: 31652931
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition.
    Flanagan NE; Wang H; Winton S; Richardson CJ
    Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbon sequestration and methane emissions along a microtopographic gradient in a tropical Andean peatland.
    Villa JA; Mejía GM; Velásquez D; Botero A; Acosta SA; Marulanda JM; Osorno AM; Bohrer G
    Sci Total Environ; 2019 Mar; 654():651-661. PubMed ID: 30447603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.