BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21368294)

  • 1. Standard magnetic resonance-based measurements of the Pi→ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles.
    From AH; Ugurbil K
    Am J Physiol Cell Physiol; 2011 Jul; 301(1):C1-11. PubMed ID: 21368294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation of ³¹P NMR saturation transfer experiments: what you can't see might confuse you. Focus on "Standard magnetic resonance-based measurements of the Pi→ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles".
    Balaban RS; Koretsky AP
    Am J Physiol Cell Physiol; 2011 Jul; 301(1):C12-5. PubMed ID: 21490314
    [No Abstract]   [Full Text] [Related]  

  • 3. ³¹P-magnetization transfer magnetic resonance spectroscopy measurements of in vivo metabolism.
    Befroy DE; Rothman DL; Petersen KF; Shulman GI
    Diabetes; 2012 Nov; 61(11):2669-78. PubMed ID: 23093656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What do magnetic resonance-based measurements of Pi→ATP flux tell us about skeletal muscle metabolism?
    Kemp GJ; Brindle KM
    Diabetes; 2012 Aug; 61(8):1927-34. PubMed ID: 22826313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents.
    Petersen KF; Dufour S; Shulman GI
    PLoS Med; 2005 Sep; 2(9):e233. PubMed ID: 16089501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Burn injury causes mitochondrial dysfunction in skeletal muscle.
    Padfield KE; Astrakas LG; Zhang Q; Gopalan S; Dai G; Mindrinos MN; Tompkins RG; Rahme LG; Tzika AA
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5368-73. PubMed ID: 15809440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.
    van den Broek NM; Ciapaite J; Nicolay K; Prompers JJ
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1136-43. PubMed ID: 20668212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study.
    Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E
    Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative ATP synthesis in skeletal muscle is controlled by substrate feedback.
    Wu F; Jeneson JA; Beard DA
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C115-24. PubMed ID: 16837647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle oxygenation and ATP turnover when blood flow is impaired by vascular disease.
    Kemp GJ; Roberts N; Bimson WE; Bakran A; Frostick SP
    Mol Biol Rep; 2002; 29(1-2):187-91. PubMed ID: 12241055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle.
    Marcinek DJ; Schenkman KA; Ciesielski WA; Lee D; Conley KE
    J Physiol; 2005 Dec; 569(Pt 2):467-73. PubMed ID: 16254011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review.
    Kemp GJ; Meyerspeer M; Moser E
    NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple approach to evaluate the kinetic rate constant for ATP synthesis in resting human skeletal muscle at 7 T.
    Ren J; Sherry AD; Malloy CR
    NMR Biomed; 2016 Sep; 29(9):1240-8. PubMed ID: 25943328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo.
    Conley KE; Amara CE; Jubrias SA; Marcinek DJ
    Exp Physiol; 2007 Mar; 92(2):333-9. PubMed ID: 17170059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional assessment of isolated mitochondria in vitro.
    Lanza IR; Nair KS
    Methods Enzymol; 2009; 457():349-72. PubMed ID: 19426878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 31P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium.
    Kingsley-Hickman PB; Sako EY; Mohanakrishnan P; Robitaille PM; From AH; Foker JE; Uğurbil K
    Biochemistry; 1987 Nov; 26(23):7501-10. PubMed ID: 3427090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function.
    Layec G; Gifford JR; Trinity JD; Hart CR; Garten RS; Park SY; Le Fur Y; Jeong EK; Richardson RS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E358-66. PubMed ID: 27302751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy metabolism in muscle approaching maximal rates of oxygen utilization.
    Wilson DF
    Med Sci Sports Exerc; 1995 Jan; 27(1):54-9. PubMed ID: 7898338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of measuring energy metabolism by different (31) P-magnetic resonance spectroscopy techniques in resting, ischemic, and exercising muscle.
    Schmid AI; Schrauwen-Hinderling VB; Andreas M; Wolzt M; Moser E; Roden M
    Magn Reson Med; 2012 Apr; 67(4):898-905. PubMed ID: 21842500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.