These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 2136859)

  • 1. Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry.
    Nakata T; Sobue K; Hirokawa N
    J Cell Biol; 1990 Jan; 110(1):13-25. PubMed ID: 2136859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C.
    Sarafian T; Pradel LA; Henry JP; Aunis D; Bader MF
    J Cell Biol; 1991 Sep; 114(6):1135-47. PubMed ID: 1832677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential subcellular distribution of p36 (the heavy chain of calpactin I) and other annexins in the adrenal medulla.
    Drust DS; Creutz CE
    J Neurochem; 1991 Feb; 56(2):469-78. PubMed ID: 1824861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells.
    Ali SM; Geisow MJ; Burgoyne RD
    Nature; 1989 Jul; 340(6231):313-5. PubMed ID: 2526299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stimulatory effect of calpactin (annexin II) on calcium-dependent exocytosis in chromaffin cells: requirement for both the N-terminal and core domains of p36 and ATP.
    Ali SM; Burgoyne RD
    Cell Signal; 1990; 2(3):265-76. PubMed ID: 2144764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium.
    Drust DS; Creutz CE
    Nature; 1988 Jan; 331(6151):88-91. PubMed ID: 2963226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential recognition of secretory vesicles by annexins. European Molecular Biology Organization Course "Advanced Techniques for Studying Secretion".
    Creutz CE; Moss S; Edwardson JM; Hide I; Gomperts B
    Biochem Biophys Res Commun; 1992 Apr; 184(1):347-52. PubMed ID: 1533123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quick-freeze, deep-etch visualization of exocytosis in anterior pituitary secretory cells: localization and possible roles of actin and annexin II.
    Senda T; Okabe T; Matsuda M; Fujita H
    Cell Tissue Res; 1994 Jul; 277(1):51-60. PubMed ID: 8055538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy.
    Nakata T; Hirokawa N
    J Neurosci; 1992 Jun; 12(6):2186-97. PubMed ID: 1607935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-fracture study of the chromaffin cell during exocytosis: evidence for connections between the plasma membrane and secretory granules and for movements of plasma membrane-associated particles.
    Aunis D; Hesketh JE; Devilliers G
    Cell Tissue Res; 1979 Apr; 197(3):433-41. PubMed ID: 455408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intragranular vesicles: new organelles in the secretory granules of adrenal chromaffin cells.
    Ornberg RL; Duong LT; Pollard HB
    Cell Tissue Res; 1986; 245(3):547-53. PubMed ID: 3757016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural and cytochemical characterization of adrenal medullary plasma membrane vesicles and their interaction with chromaffin granules.
    Rosenheck K; Plattner H
    Biochim Biophys Acta; 1986 Apr; 856(2):373-82. PubMed ID: 3955049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium, the cytoskeleton and calpactin (annexin II) in exocytotic secretion from adrenal chromaffin and mammary epithelial cells.
    Burgoyne RD; Handel SE; Morgan A; Rennison ME; Turner MD; Wilde CJ
    Biochem Soc Trans; 1991 Nov; 19(4):1085-90. PubMed ID: 1838988
    [No Abstract]   [Full Text] [Related]  

  • 14. Calcium-induced displacement of membrane-associated particles upon aggregation of chromaffin granules.
    Schober R; Nitsch C; Rinne U; Morris SJ
    Science; 1977 Feb; 195(4277):495-7. PubMed ID: 835010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidermal growth factor induces the accumulation of calpactin II on the cell surface during membrane ruffling.
    Campos-Gonzalez R; Kanemitsu M; Boynton AL
    Cell Motil Cytoskeleton; 1990; 15(1):34-40. PubMed ID: 2136806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1.
    Hirokawa N; Sobue K; Kanda K; Harada A; Yorifuji H
    J Cell Biol; 1989 Jan; 108(1):111-26. PubMed ID: 2536030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immunolabeling.
    Patzak A; Winkler H
    J Cell Biol; 1986 Feb; 102(2):510-5. PubMed ID: 3080437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intergranular bridges in the anterior pituitary cell and their possible involvement in Ca2+-induced granule-granule fusion.
    Senda T; Yamashita K; Okabe T; Sugimoto N; Matsuda M
    Cell Tissue Res; 1998 Jun; 292(3):513-9. PubMed ID: 9582408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The calpactin light chain is tightly linked to the cytoskeletal form of calpactin I: studies using monoclonal antibodies to calpactin subunits.
    Zokas L; Glenney JR
    J Cell Biol; 1987 Nov; 105(5):2111-21. PubMed ID: 2960683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-specific association of annexin I and annexin II in anterior pituitary cells.
    Turgeon JL; Cooper RH; Waring DW
    Endocrinology; 1991 Jan; 128(1):96-102. PubMed ID: 1824759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.