These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21369115)
1. Eigen decomposition solution to the one-dimensional time-dependent photon transport equation. Handapangoda CC; Pathirana PN; Premaratne M Opt Express; 2011 Feb; 19(4):2922-7. PubMed ID: 21369115 [TBL] [Abstract][Full Text] [Related]
2. Implicitly causality enforced solution of multidimensional transient photon transport equation. Handapangoda CC; Premaratne M Opt Express; 2009 Dec; 17(26):23423-42. PubMed ID: 20052050 [TBL] [Abstract][Full Text] [Related]
3. Graphics processing unit parallel accelerated solution of the discrete ordinates for photon transport in biological tissues. Peng K; Gao X; Qu X; Ren N; Chen X; He X; Wang X; Liang J; Tian J Appl Opt; 2011 Jul; 50(21):3808-23. PubMed ID: 21772362 [TBL] [Abstract][Full Text] [Related]
4. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions. Tarvainen T; Vauhkonen M; Kolehmainen V; Arridge SR; Kaipio JP Phys Med Biol; 2005 Oct; 50(20):4913-30. PubMed ID: 16204880 [TBL] [Abstract][Full Text] [Related]
5. Solving radiative transfer problems in highly heterogeneous media via domain decomposition and convergence acceleration techniques. Previti A; Furfaro R; Picca P; Ganapol BD; Mostacci D Appl Radiat Isot; 2011 Aug; 69(8):1146-50. PubMed ID: 21131208 [TBL] [Abstract][Full Text] [Related]
6. Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media. Guo Z; Kumar S Appl Opt; 2001 Jul; 40(19):3156-63. PubMed ID: 11958253 [TBL] [Abstract][Full Text] [Related]
7. Solving analytically the simplified spherical harmonics equations in cylindrical turbid media. Edjlali E; Bérubé-Lauzière Y J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1633-1644. PubMed ID: 30182999 [TBL] [Abstract][Full Text] [Related]
8. One-dimensional transport equation models for sound energy propagation in long spaces: theory. Jing Y; Larsen EW; Xiang N J Acoust Soc Am; 2010 Apr; 127(4):2312-22. PubMed ID: 20370013 [TBL] [Abstract][Full Text] [Related]
9. A deterministic partial differential equation model for dose calculation in electron radiotherapy. Duclous R; Dubroca B; Frank M Phys Med Biol; 2010 Jul; 55(13):3843-57. PubMed ID: 20571208 [TBL] [Abstract][Full Text] [Related]
10. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments. Jing Y; Xiang N J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014 [TBL] [Abstract][Full Text] [Related]
11. Modelling inert gas exchange in tissue and mixed-venous blood return to the lungs. Whiteley JP; Gavaghan DJ; Hahn CE J Theor Biol; 2001 Apr; 209(4):431-43. PubMed ID: 11319892 [TBL] [Abstract][Full Text] [Related]
12. Invariant manifolds of an autonomous ordinary differential equation from its generalized normal forms. Palacián J Chaos; 2003 Dec; 13(4):1188-204. PubMed ID: 14604410 [TBL] [Abstract][Full Text] [Related]
13. Light transport in three-dimensional semi-infinite scattering media. Liemert A; Kienle A J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1475-81. PubMed ID: 22751416 [TBL] [Abstract][Full Text] [Related]
14. Solution of transport equations in layered media with refractive index mismatch using the PN-method. Phillips KG; Jacques SL J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2147-62. PubMed ID: 19798392 [TBL] [Abstract][Full Text] [Related]
15. A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography. Yuan Z; Hu XH; Jiang H Phys Med Biol; 2009 Jan; 54(1):65-88. PubMed ID: 19060361 [TBL] [Abstract][Full Text] [Related]
16. Approximate method for radiative transfer in scattering absorbing plane-parallel media. Chou YS Appl Opt; 1978 Feb; 17(3):364-73. PubMed ID: 20174416 [TBL] [Abstract][Full Text] [Related]
17. Quantum mechanical generalized phase-shift approach to atom-surface scattering: a Feshbach projection approach to dealing with closed channel effects. Maji K; Kouri DJ J Chem Phys; 2011 Mar; 134(12):124103. PubMed ID: 21456641 [TBL] [Abstract][Full Text] [Related]
18. Effect of viscoelastic relaxation on moisture transport in foods. Part I: solution of general transport equation. Singh PP; Maier DE; Cushman JH; Haghighi K; Corvalan C J Math Biol; 2004 Jul; 49(1):1-19. PubMed ID: 15235816 [TBL] [Abstract][Full Text] [Related]
19. Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration. Budak VP; Kaloshin GA; Shagalov OV; Zheltov VS Opt Express; 2015 Jul; 23(15):A829-40. PubMed ID: 26367684 [TBL] [Abstract][Full Text] [Related]
20. Numerical examination of the extended phase-space volume-preserving integrator by the Nosé-Hoover molecular dynamics equations. Queyroy S; Nakamura H; Fukuda I J Comput Chem; 2009 Sep; 30(12):1799-815. PubMed ID: 19090566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]