These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21369185)

  • 1. Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet.
    Volpe G; Volpe G; Quidant R
    Opt Express; 2011 Feb; 19(4):3612-8. PubMed ID: 21369185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 May; 19(11):10456-61. PubMed ID: 21643300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband plasmonic nanoantenna with an adjustable spectral response.
    Unlü ES; Tok RU; Sendur K
    Opt Express; 2011 Jan; 19(2):1000-6. PubMed ID: 21263638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters.
    Maraghechi P; Elezzabi AY
    Opt Express; 2010 Dec; 18(26):27336-45. PubMed ID: 21197012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.
    Bellido EP; Bernasconi GD; Rossouw D; Butet J; Martin OJF; Botton GA
    ACS Nano; 2017 Nov; 11(11):11240-11249. PubMed ID: 29083865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding near/far-field engineering of optical dimer antennas through geometry modification.
    Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P
    Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanowire photovoltaic efficiency enhancement using plasmonic coupled nano-fractal antennas.
    Abdellatif S; Kirah K
    Opt Lett; 2013 Sep; 38(18):3680-3. PubMed ID: 24104845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants.
    de Silva VC; Nyga P; Drachev VP
    J Colloid Interface Sci; 2016 Dec; 484():116-124. PubMed ID: 27597748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semishells: versatile plasmonic nanoparticles.
    Van Dorpe P; Ye J
    ACS Nano; 2011 Sep; 5(9):6774-8. PubMed ID: 21866935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic trapping with a gold nanopillar.
    Wang K; Crozier KB
    Chemphyschem; 2012 Aug; 13(11):2639-48. PubMed ID: 22623501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden progress: broadband plasmonic invisibility.
    Renger J; Kadic M; Dupont G; Aćimović SS; Guenneau S; Quidant R; Enoch S
    Opt Express; 2010 Jul; 18(15):15757-68. PubMed ID: 20720959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of light from microdisk lasers into plasmonic nano-antennas.
    Hattori HT; Li Z; Liu D; Rukhlenko ID; Premaratne M
    Opt Express; 2009 Nov; 17(23):20878-84. PubMed ID: 19997324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancements in fractal plasmonics: structures, optical properties, and applications.
    Wallace GQ; Lagugné-Labarthet F
    Analyst; 2018 Dec; 144(1):13-30. PubMed ID: 30403204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sculpting nanometer-sized light landscape with plasmonic nanocolumns.
    Marty R; Arbouet A; Girard C; Margueritat J; Gonzalo J; Afonso CN
    J Chem Phys; 2009 Dec; 131(22):224707. PubMed ID: 20001076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures.
    Lu G; Li W; Zhang T; Yue S; Liu J; Hou L; Li Z; Gong Q
    ACS Nano; 2012 Feb; 6(2):1438-48. PubMed ID: 22247937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties.
    Messina E; Cavallaro E; Cacciola A; Iatì MA; Gucciardi PG; Borghese F; Denti P; Saija R; Compagnini G; Meneghetti M; Amendola V; Maragò OM
    ACS Nano; 2011 Feb; 5(2):905-13. PubMed ID: 21207989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resource efficient plasmon-based 2D-photovoltaics with reflective support.
    Hägglund C; Apell SP
    Opt Express; 2010 Sep; 18 Suppl 3():A343-56. PubMed ID: 21165065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoplasmonics of prime number arrays.
    Forestiere C; Walsh GF; Miano G; Dal Negro L
    Opt Express; 2009 Dec; 17(26):24288-303. PubMed ID: 20052140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.