BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21369733)

  • 1. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players.
    Girard O; Racinais S; Kelly L; Millet GP; Brocherie F
    Eur J Appl Physiol; 2011 Oct; 111(10):2547-55. PubMed ID: 21369733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players.
    Brocherie F; Millet GP; Girard O
    Eur J Appl Physiol; 2015 May; 115(5):891-903. PubMed ID: 25481506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in spring-mass model characteristics during repeated running sprints.
    Girard O; Micallef JP; Millet GP
    Eur J Appl Physiol; 2011 Jan; 111(1):125-34. PubMed ID: 20824280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Running mechanics and leg muscle activity patterns during early and late acceleration phases of repeated treadmill sprints in male recreational athletes.
    Girard O; Brocherie F; Morin JB; Millet GP; Hansen C
    Eur J Appl Physiol; 2020 Dec; 120(12):2785-2796. PubMed ID: 32980967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is Plantar Loading Altered During Repeated Sprints on Artificial Turf in International Football Players?
    Girard O; Millet GP; Thomson A; Brocherie F
    J Sports Sci Med; 2018 Sep; 17(3):359-365. PubMed ID: 30116108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curve Sprinting in Soccer: Kinematic and Neuromuscular Analysis.
    Filter A; Olivares-Jabalera J; Santalla A; Morente-Sánchez J; Robles-Rodríguez J; Requena B; Loturco I
    Int J Sports Med; 2020 Oct; 41(11):744-750. PubMed ID: 32492732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners.
    Fourchet F; Girard O; Kelly L; Horobeanu C; Millet GP
    J Sci Med Sport; 2015 Mar; 18(2):199-203. PubMed ID: 24589370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Lower-Limb Strength Training on Agility, Repeated Sprinting With Changes of Direction, Leg Peak Power, and Neuromuscular Adaptations of Soccer Players.
    Hammami M; Negra Y; Billaut F; Hermassi S; Shephard RJ; Chelly MS
    J Strength Cond Res; 2018 Jan; 32(1):37-47. PubMed ID: 28678768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher plantar pressure on the medial side in four soccer-related movements.
    Wong PL; Chamari K; Mao DW; Wisløff U; Hong Y
    Br J Sports Med; 2007 Feb; 41(2):93-100. PubMed ID: 17178776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle Activity, Leg Stiffness, and Kinematics During Unresisted and Resisted Sprinting Conditions.
    Zabaloy S; Carlos-Vivas J; Freitas TT; Pareja-Blanco F; Loturco I; Comyns T; Gálvez-González J; Alcaraz PE
    J Strength Cond Res; 2022 Jul; 36(7):1839-1846. PubMed ID: 32658032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of two different half-squat training programs on fatigue during repeated cycling sprints in soccer players.
    Bogdanis GC; Papaspyrou A; Souglis AG; Theos A; Sotiropoulos A; Maridaki M
    J Strength Cond Res; 2011 Jul; 25(7):1849-56. PubMed ID: 21572356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A one year aging process of a soccer shoe does not increase plantar loading of the foot during soccer specific movements].
    Eils E; Streyl M
    Sportverletz Sportschaden; 2005 Sep; 19(3):140-5. PubMed ID: 16167267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players.
    Chelly MS; Fathloun M; Cherif N; Ben Amar M; Tabka Z; Van Praagh E
    J Strength Cond Res; 2009 Nov; 23(8):2241-9. PubMed ID: 19826302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics and predicted energetics of sprinting on sand: hints for soccer training.
    Gaudino P; Gaudino C; Alberti G; Minetti AE
    J Sci Med Sport; 2013 May; 16(3):271-5. PubMed ID: 22883597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-stance phase force contributions to acceleration sprint performance in semi-professional soccer players.
    Wdowski MM; Gittoes MJR
    Eur J Sport Sci; 2020 Apr; 20(3):366-374. PubMed ID: 31167614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in plantar pressure between the preferred and non-preferred feet in four soccer-related movements.
    Wong PL; Chamari K; Chaouachi A; Mao DW; Wisløff U; Hong Y
    Br J Sports Med; 2007 Feb; 41(2):84-92. PubMed ID: 17138639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical Force-velocity Profiling and Relationship to Sprinting in Elite Female Soccer Players.
    Manson SA; Low C; Legg H; Patterson SD; Meylan C
    Int J Sports Med; 2021 Sep; 42(10):911-916. PubMed ID: 33601423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of determinant factors of maximal sprinting and repeated sprint ability in women soccer players.
    González-Fernández FT; García-Taibo O; Vila M; Nobari H; Clemente FM
    Sci Rep; 2022 Jun; 12(1):10633. PubMed ID: 35739139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships of peak leg power, 1 maximal repetition half back squat, and leg muscle volume to 5-m sprint performance of junior soccer players.
    Chelly MS; Chérif N; Amar MB; Hermassi S; Fathloun M; Bouhlel E; Tabka Z; Shephard RJ
    J Strength Cond Res; 2010 Jan; 24(1):266-71. PubMed ID: 19924009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cross-sectional study on foot loading patterns in elite soccer players of different ages.
    Hotfiel T; Golditz T; Wegner J; Pauser J; Brem M; Swoboda B; Carl HD
    J Back Musculoskelet Rehabil; 2020; 33(6):939-946. PubMed ID: 32310157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.