These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21369756)

  • 1. Time-resolved mid-IR spectroscopy of (bio)chemical reactions in solution utilizing a new generation of continuous-flow micro-mixers.
    Wagner C; Buchegger W; Vellekoop M; Kraft M; Lendl B
    Anal Bioanal Chem; 2011 Jun; 400(8):2487-97. PubMed ID: 21369756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin.
    Kakuta M; Hinsmann P; Manz A; Lendl B
    Lab Chip; 2003 May; 3(2):82-5. PubMed ID: 15100787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events.
    Jang H; Pawate AS; Bhargava R; Kenis PJA
    Lab Chip; 2019 Aug; 19(15):2598-2609. PubMed ID: 31259340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved mass spectrometry for monitoring millisecond time-scale solution-phase processes.
    Rob T; Wilson DJ
    Eur J Mass Spectrom (Chichester); 2012; 18(2):205-14. PubMed ID: 22641726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic mixers for studying protein folding.
    Waldauer SA; Wu L; Yao S; Bakajin O; Lapidus LJ
    J Vis Exp; 2012 Apr; (62):. PubMed ID: 22525257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, simulation and application of a new micromixing device for time resolved infrared spectroscopy of chemical reactions in solution.
    Hinsmann P; Frank J; Svasek P; Harasek M; Lendl B
    Lab Chip; 2001 Sep; 1(1):16-21. PubMed ID: 15100884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale.
    Mitic S; van Nieuwkasteele JW; van den Berg A; de Vries S
    Anal Biochem; 2015 Jan; 469():19-26. PubMed ID: 25447461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taylor dispersion and the position-to-time conversion in microfluidic mixing devices.
    Wunderlich B; Nettels D; Schuler B
    Lab Chip; 2014 Jan; 14(1):219-28. PubMed ID: 24195996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved Fourier transform infrared spectroscopy of chemical reactions in solution using a focal plane array detector.
    Kaun N; Vellekoop MJ; Lendl B
    Appl Spectrosc; 2006 Nov; 60(11):1273-8. PubMed ID: 17132444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection.
    Kise DP; Magana D; Reddish MJ; Dyer RB
    Lab Chip; 2014 Feb; 14(3):584-91. PubMed ID: 24302515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stopped flow apparatus for time-resolved Fourier transform infrared difference spectroscopy of biological macromolecules in 1H2O.
    Masuch R; Moss DA
    Appl Spectrosc; 2003 Nov; 57(11):1407-18. PubMed ID: 14658156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microsecond microfluidic mixer for characterizing fast biochemical reactions.
    Li Y; Zhang D; Feng X; Xu Y; Liu BF
    Talanta; 2012 Jan; 88():175-80. PubMed ID: 22265484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid prototyping of microfluidic devices for integrating with FT-IR spectroscopic imaging.
    Chan KL; Niu X; de Mello AJ; Kazarian SG
    Lab Chip; 2010 Aug; 10(16):2170-4. PubMed ID: 20532270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying enzymatic bioreactions in a millisecond microfluidic flow mixer.
    Buchegger W; Haller A; van den Driesche S; Kraft M; Lendl B; Vellekoop M
    Biomicrofluidics; 2012 Mar; 6(1):12803-128039. PubMed ID: 22662071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic T-form mixer utilizing switching electroosmotic flow.
    Lin CH; Fu LM; Chien YS
    Anal Chem; 2004 Sep; 76(18):5265-72. PubMed ID: 15362882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially resolved in situ determination of reaction progress using microfluidic systems and FT-IR spectroscopy as a tool for biocatalytic process development.
    Fagaschewski J; Sellin D; Wiedenhöfer C; Bohne S; Trieu HK; Hilterhaus L
    Bioprocess Biosyst Eng; 2015 Jul; 38(7):1399-405. PubMed ID: 25732540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods to study protein folding by stopped-flow FT-IR.
    Fabian H; Naumann D
    Methods; 2004 Sep; 34(1):28-40. PubMed ID: 15283913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.