BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21369756)

  • 1. Time-resolved mid-IR spectroscopy of (bio)chemical reactions in solution utilizing a new generation of continuous-flow micro-mixers.
    Wagner C; Buchegger W; Vellekoop M; Kraft M; Lendl B
    Anal Bioanal Chem; 2011 Jun; 400(8):2487-97. PubMed ID: 21369756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin.
    Kakuta M; Hinsmann P; Manz A; Lendl B
    Lab Chip; 2003 May; 3(2):82-5. PubMed ID: 15100787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events.
    Jang H; Pawate AS; Bhargava R; Kenis PJA
    Lab Chip; 2019 Aug; 19(15):2598-2609. PubMed ID: 31259340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved mass spectrometry for monitoring millisecond time-scale solution-phase processes.
    Rob T; Wilson DJ
    Eur J Mass Spectrom (Chichester); 2012; 18(2):205-14. PubMed ID: 22641726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic mixers for studying protein folding.
    Waldauer SA; Wu L; Yao S; Bakajin O; Lapidus LJ
    J Vis Exp; 2012 Apr; (62):. PubMed ID: 22525257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, simulation and application of a new micromixing device for time resolved infrared spectroscopy of chemical reactions in solution.
    Hinsmann P; Frank J; Svasek P; Harasek M; Lendl B
    Lab Chip; 2001 Sep; 1(1):16-21. PubMed ID: 15100884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale.
    Mitic S; van Nieuwkasteele JW; van den Berg A; de Vries S
    Anal Biochem; 2015 Jan; 469():19-26. PubMed ID: 25447461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taylor dispersion and the position-to-time conversion in microfluidic mixing devices.
    Wunderlich B; Nettels D; Schuler B
    Lab Chip; 2014 Jan; 14(1):219-28. PubMed ID: 24195996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved Fourier transform infrared spectroscopy of chemical reactions in solution using a focal plane array detector.
    Kaun N; Vellekoop MJ; Lendl B
    Appl Spectrosc; 2006 Nov; 60(11):1273-8. PubMed ID: 17132444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection.
    Kise DP; Magana D; Reddish MJ; Dyer RB
    Lab Chip; 2014 Feb; 14(3):584-91. PubMed ID: 24302515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stopped flow apparatus for time-resolved Fourier transform infrared difference spectroscopy of biological macromolecules in 1H2O.
    Masuch R; Moss DA
    Appl Spectrosc; 2003 Nov; 57(11):1407-18. PubMed ID: 14658156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microsecond microfluidic mixer for characterizing fast biochemical reactions.
    Li Y; Zhang D; Feng X; Xu Y; Liu BF
    Talanta; 2012 Jan; 88():175-80. PubMed ID: 22265484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid prototyping of microfluidic devices for integrating with FT-IR spectroscopic imaging.
    Chan KL; Niu X; de Mello AJ; Kazarian SG
    Lab Chip; 2010 Aug; 10(16):2170-4. PubMed ID: 20532270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying enzymatic bioreactions in a millisecond microfluidic flow mixer.
    Buchegger W; Haller A; van den Driesche S; Kraft M; Lendl B; Vellekoop M
    Biomicrofluidics; 2012 Mar; 6(1):12803-128039. PubMed ID: 22662071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic T-form mixer utilizing switching electroosmotic flow.
    Lin CH; Fu LM; Chien YS
    Anal Chem; 2004 Sep; 76(18):5265-72. PubMed ID: 15362882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially resolved in situ determination of reaction progress using microfluidic systems and FT-IR spectroscopy as a tool for biocatalytic process development.
    Fagaschewski J; Sellin D; Wiedenhöfer C; Bohne S; Trieu HK; Hilterhaus L
    Bioprocess Biosyst Eng; 2015 Jul; 38(7):1399-405. PubMed ID: 25732540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods to study protein folding by stopped-flow FT-IR.
    Fabian H; Naumann D
    Methods; 2004 Sep; 34(1):28-40. PubMed ID: 15283913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.