These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21369889)

  • 1. A comparative analysis of parallel computing approaches for genome assembly.
    Ahmed M; Ahmad I; Khan SU
    Interdiscip Sci; 2011 Mar; 3(1):57-63. PubMed ID: 21369889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Theory and Practice of Genome Sequence Assembly.
    Simpson JT; Pop M
    Annu Rev Genomics Hum Genet; 2015; 16():153-72. PubMed ID: 25939056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ParPEST: a pipeline for EST data analysis based on parallel computing.
    D'Agostino N; Aversano M; Chiusano ML
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S9. PubMed ID: 16351758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants.
    Petrini A; Mesiti M; Schubach M; Frasca M; Danis D; Re M; Grossi G; Cappelletti L; Castrignanò T; Robinson PN; Valentini G
    Gigascience; 2020 May; 9(5):. PubMed ID: 32444882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of algorithms for whole-genome assembly of pyrosequencing data.
    Finotello F; Lavezzo E; Fontana P; Peruzzo D; Albiero A; Barzon L; Falda M; Di Camillo B; Toppo S
    Brief Bioinform; 2012 May; 13(3):269-80. PubMed ID: 22021898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence assembly.
    Scheibye-Alsing K; Hoffmann S; Frankel A; Jensen P; Stadler PF; Mang Y; Tommerup N; Gilchrist MJ; Nygård AB; Cirera S; Jørgensen CB; Fredholm M; Gorodkin J
    Comput Biol Chem; 2009 Apr; 33(2):121-36. PubMed ID: 19152793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counting Kmers for Biological Sequences at Large Scale.
    Ge J; Meng J; Guo N; Wei Y; Balaji P; Feng S
    Interdiscip Sci; 2020 Mar; 12(1):99-108. PubMed ID: 31734873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloud computing for comparative genomics.
    Wall DP; Kudtarkar P; Fusaro VA; Pivovarov R; Patil P; Tonellato PJ
    BMC Bioinformatics; 2010 May; 11():259. PubMed ID: 20482786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation sequencing technologies and fragment assembly algorithms.
    Lee H; Tang H
    Methods Mol Biol; 2012; 855():155-74. PubMed ID: 22407708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatics software for biologists in the genomics era.
    Kumar S; Dudley J
    Bioinformatics; 2007 Jul; 23(14):1713-7. PubMed ID: 17485425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Parallel Strategy Based on String Graph Theory to Improve De Novo DNA Assembly on the TianHe-2 Supercomputer.
    Zhang F; Liao X; Peng S; Cui Y; Wang B; Zhu X; Liu J
    Interdiscip Sci; 2016 Jun; 8(2):169-176. PubMed ID: 26403255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operating on Genomic Ranges Using BEDOPS.
    Neph S; Reynolds AP; Kuehn MS; Stamatoyannopoulos JA
    Methods Mol Biol; 2016; 1418():267-81. PubMed ID: 27008020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parallel algorithm for error correction in high-throughput short-read data on CUDA-enabled graphics hardware.
    Shi H; Schmidt B; Liu W; Müller-Wittig W
    J Comput Biol; 2010 Apr; 17(4):603-15. PubMed ID: 20426693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PGA4genomics for comparative genome assembly based on genetic algorithm optimization.
    Zhao F; Hou H; Bao Q; Wu J
    Genomics; 2009 Oct; 94(4):284-6. PubMed ID: 19573591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient algorithm for DNA fragment assembly in MapReduce.
    Xu B; Gao J; Li C
    Biochem Biophys Res Commun; 2012 Sep; 426(3):395-8. PubMed ID: 22960169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimal conflicting sets for the consecutive ones property in ancestral genome reconstruction.
    Chauve C; Hausd UU; Stephen T; You VP
    J Comput Biol; 2010 Sep; 17(9):1167-81. PubMed ID: 20874402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of ancestral genomic sequences using likelihood.
    Elias I; Tuller T
    J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome assembly using quantum and quantum-inspired annealing.
    Boev AS; Rakitko AS; Usmanov SR; Kobzeva AN; Popov IV; Ilinsky VV; Kiktenko EO; Fedorov AK
    Sci Rep; 2021 Jun; 11(1):13183. PubMed ID: 34162895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High performance GRID based implementation for genomics and protein analysis.
    Milanesi L; Merelli I
    Stud Health Technol Inform; 2006; 120():374-80. PubMed ID: 16823155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical note: Computing strategies in genome-wide selection.
    Legarra A; Misztal I
    J Dairy Sci; 2008 Jan; 91(1):360-6. PubMed ID: 18096959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.