BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21369920)

  • 1. Involvement of auxin distribution in root nodule development of Lotus japonicus.
    Takanashi K; Sugiyama A; Yazaki K
    Planta; 2011 Jul; 234(1):73-81. PubMed ID: 21369920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin distribution in Lotus japonicus during root nodule development.
    Pacios-Bras C; Schlaman HR; Boot K; Admiraal P; Langerak JM; Stougaard J; Spaink HP
    Plant Mol Biol; 2003 Aug; 52(6):1169-80. PubMed ID: 14682616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxin distribution and lenticel formation in determinate nodule of Lotus japonicus.
    Takanashi K; Sugiyama A; Yazaki K
    Plant Signal Behav; 2011 Sep; 6(9):1405-7. PubMed ID: 22019641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LjABCB1, an ATP-binding cassette protein specifically induced in uninfected cells of Lotus japonicus nodules.
    Takanashi K; Sugiyama A; Sato S; Tabata S; Yazaki K
    J Plant Physiol; 2012 Feb; 169(3):322-6. PubMed ID: 22209217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of localized auxin response during spontaneous nodule development in Lotus japonicus.
    Suzaki T; Ito M; Kawaguchi M
    Plant Signal Behav; 2013 Mar; 8(3):e23359. PubMed ID: 23299335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis.
    Zhang Z; Ke D; Hu M; Zhang C; Deng L; Li Y; Li J; Zhao H; Cheng L; Wang L; Yuan H
    Plant Mol Biol; 2019 Jun; 100(3):265-283. PubMed ID: 30989446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The
    Rogato A; Valkov VT; Nadzieja M; Stougaard J; Chiurazzi M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rhizobial autotransporter determines the symbiotic nitrogen fixation activity of
    Shimoda Y; Nishigaya Y; Yamaya-Ito H; Inagaki N; Umehara Y; Hirakawa H; Sato S; Yamazaki T; Hayashi M
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1806-1815. PubMed ID: 31900357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative modelling of legume root nodule primordium induction by a diffusive signal of epidermal origin that inhibits auxin efflux.
    Deinum EE; Kohlen W; Geurts R
    BMC Plant Biol; 2016 Nov; 16(1):254. PubMed ID: 27846795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin methylation by
    Goto T; Soyano T; Liu M; Mori T; Kawaguchi M
    Proc Natl Acad Sci U S A; 2022 Mar; 119(10):e2116549119. PubMed ID: 35235457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis.
    Roy S; Robson F; Lilley J; Liu CW; Cheng X; Wen J; Walker S; Sun J; Cousins D; Bone C; Bennett MJ; Downie JA; Swarup R; Oldroyd G; Murray JD
    Plant Physiol; 2017 May; 174(1):326-338. PubMed ID: 28363992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lotus japonicus Nuclear Factor YA1, a nodule emergence stage-specific regulator of auxin signalling.
    Shrestha A; Zhong S; Therrien J; Huebert T; Sato S; Mun T; Andersen SU; Stougaard J; Lepage A; Niebel A; Ross L; Szczyglowski K
    New Phytol; 2021 Feb; 229(3):1535-1552. PubMed ID: 32978812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nodule-Enriched GRETCHEN HAGEN 3 Enzymes Have Distinct Substrate Specificities and Are Important for Proper Soybean Nodule Development.
    Damodaran S; Westfall CS; Kisely BA; Jez JM; Subramanian S
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29182530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression Analysis of
    Sańko-Sawczenko I; Dmitruk D; Łotocka B; Różańska E; Czarnocka W
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation.
    Ng JLP; Mathesius U
    Front Plant Sci; 2018; 9():169. PubMed ID: 29497432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidermal auxin biosynthesis facilitates rhizobial infection in Lotus japonicus.
    Nadzieja M; Kelly S; Stougaard J; Reid D
    Plant J; 2018 Jul; 95(1):101-111. PubMed ID: 29676826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus.
    Tominaga A; Nagata M; Futsuki K; Abe H; Uchiumi T; Abe M; Kucho K; Hashiguchi M; Akashi R; Hirsch AM; Arima S; Suzuki A
    Plant Physiol; 2009 Dec; 151(4):1965-76. PubMed ID: 19776164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean.
    Turner M; Nizampatnam NR; Baron M; Coppin S; Damodaran S; Adhikari S; Arunachalam SP; Yu O; Subramanian S
    Plant Physiol; 2013 Aug; 162(4):2042-55. PubMed ID: 23796794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules.
    Holt DB; Gupta V; Meyer D; Abel NB; Andersen SU; Stougaard J; Markmann K
    New Phytol; 2015 Oct; 208(1):241-56. PubMed ID: 25967282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains.
    Yamaya-Ito H; Shimoda Y; Hakoyama T; Sato S; Kaneko T; Hossain MS; Shibata S; Kawaguchi M; Hayashi M; Kouchi H; Umehara Y
    Plant J; 2018 Jan; 93(1):5-16. PubMed ID: 29086445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.