These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21370442)

  • 21. The effect of low level laser irradiation on implant-tissue interaction. In vivo and in vitro studies.
    Khadra M
    Swed Dent J Suppl; 2005; (172):1-63. PubMed ID: 15906852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface modifications and cell-materials interactions with anodized Ti.
    Das K; Bose S; Bandyopadhyay A
    Acta Biomater; 2007 Jul; 3(4):573-85. PubMed ID: 17320494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arachidonic acid and prostaglandin E2 influence human osteoblast (MG63) response to titanium surface roughness.
    Dean DD; Campbell CM; Gruwell SF; Tindall JW; Chuang HH; Zhong W; Schmitz JP; Sylvia VL
    J Oral Implantol; 2008; 34(6):303-12. PubMed ID: 19133484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells.
    Grinevich A; Bacakova L; Choukourov A; Boldyryeva H; Pihosh Y; Slavinska D; Noskova L; Skuciova M; Lisa V; Biederman H
    J Biomed Mater Res A; 2009 Mar; 88(4):952-66. PubMed ID: 18384161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface.
    Kabaso D; Gongadze E; Perutková S; Matschegewski C; Kralj-Iglic V; Beck U; van Rienen U; Iglic A
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):469-82. PubMed ID: 21516531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short-term plasma-cleaning treatments enhance in vitro osteoblast attachment to titanium.
    Swart KM; Keller JC; Wightman JP; Draughn RA; Stanford CM; Michaels CM
    J Oral Implantol; 1992; 18(2):130-7. PubMed ID: 1289550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation.
    Xie Y; Liu X; Huang A; Ding C; Chu PK
    Biomaterials; 2005 Nov; 26(31):6129-35. PubMed ID: 15885768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates.
    Ochsenbein A; Chai F; Winter S; Traisnel M; Breme J; Hildebrand HF
    Acta Biomater; 2008 Sep; 4(5):1506-17. PubMed ID: 18440883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell architecture-cell function dependencies on titanium arrays with regular geometry.
    Matschegewski C; Staehlke S; Loeffler R; Lange R; Chai F; Kern DP; Beck U; Nebe BJ
    Biomaterials; 2010 Aug; 31(22):5729-40. PubMed ID: 20434213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The osteogenic differentiation of human osteoprogenitor cells on Anodic-Plasma-Chemical treated Ti6Al7Nb.
    Verrier S; Peroglio M; Voisard C; Lechmann B; Alini M
    Biomaterials; 2011 Jan; 32(3):672-80. PubMed ID: 20933272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts.
    Zreiqat H; Valenzuela SM; Nissan BB; Roest R; Knabe C; Radlanski RJ; Renz H; Evans PJ
    Biomaterials; 2005 Dec; 26(36):7579-86. PubMed ID: 16002135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and characterization of titanium-containing hydroxyapatite for medical applications.
    Huang J; Best SM; Bonfield W; Buckland T
    Acta Biomater; 2010 Jan; 6(1):241-9. PubMed ID: 19577668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The biocompatibility of SLA-treated titanium implants.
    Kim H; Choi SH; Ryu JJ; Koh SY; Park JH; Lee IS
    Biomed Mater; 2008 Jun; 3(2):025011. PubMed ID: 18458368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased osteoblast adhesion on nanograined Ti modified with KRSR.
    Balasundaram G; Webster TJ
    J Biomed Mater Res A; 2007 Mar; 80(3):602-11. PubMed ID: 17031820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces.
    Finke B; Luethen F; Schroeder K; Mueller PD; Bergemann C; Frant M; Ohl A; Nebe BJ
    Biomaterials; 2007 Oct; 28(30):4521-34. PubMed ID: 17628662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic interaction of topographic features in the production of bone-like nodules on Ti surfaces by rat osteoblasts.
    Wieland M; Textor M; Chehroudi B; Brunette DM
    Biomaterials; 2005 Apr; 26(10):1119-30. PubMed ID: 15451631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polishing and coating carbon fiber-reinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro.
    Bacáková L; Starý V; Kofronová O; Lisá V
    J Biomed Mater Res; 2001 Mar; 54(4):567-78. PubMed ID: 11426603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials.
    Att W; Hori N; Takeuchi M; Ouyang J; Yang Y; Anpo M; Ogawa T
    Biomaterials; 2009 Oct; 30(29):5352-63. PubMed ID: 19595450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.