These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21370447)

  • 1. Development of chitosan-vancomycin antimicrobial coatings on titanium implants.
    Swanson TE; Cheng X; Friedrich C
    J Biomed Mater Res A; 2011 May; 97(2):167-76. PubMed ID: 21370447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface.
    Shi X; Wu H; Li Y; Wei X; Du Y
    J Biomed Mater Res A; 2013 May; 101(5):1373-8. PubMed ID: 23077102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrochemically deposited nanohydroxyapatite on bone bonding of sandblasted/dual acid-etched titanium implant.
    He F; Yang G; Wang X; Zhao S
    Int J Oral Maxillofac Implants; 2009; 24(5):790-9. PubMed ID: 19865618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study.
    Norowski PA; Courtney HS; Babu J; Haggard WO; Bumgardner JD
    Implant Dent; 2011 Feb; 20(1):56-67. PubMed ID: 21278528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevention the formation of biofilm on orthopedic implants by melittin thin layer on chitosan/bioactive glass/vancomycin coatings.
    Zarghami V; Ghorbani M; Bagheri KP; Shokrgozar MA
    J Mater Sci Mater Med; 2021 Jun; 32(7):75. PubMed ID: 34156547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I
    Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface analysis of machined versus sandblasted and acid-etched titanium implants.
    Orsini G; Assenza B; Scarano A; Piattelli M; Piattelli A
    Int J Oral Maxillofac Implants; 2000; 15(6):779-84. PubMed ID: 11151575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections.
    Ordikhani F; Tamjid E; Simchi A
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():240-8. PubMed ID: 24907757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.
    Gulati K; Ramakrishnan S; Aw MS; Atkins GJ; Findlay DM; Losic D
    Acta Biomater; 2012 Jan; 8(1):449-56. PubMed ID: 21930254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone.
    Sul YT; Johansson CB; Albrektsson T
    Int J Oral Maxillofac Implants; 2002; 17(5):625-34. PubMed ID: 12381062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform.
    Sirivisoot S; Pareta RA; Webster TJ
    J Biomed Mater Res A; 2011 Dec; 99(4):586-97. PubMed ID: 21953843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biocompatibility of SLA-treated titanium implants.
    Kim H; Choi SH; Ryu JJ; Koh SY; Park JH; Lee IS
    Biomed Mater; 2008 Jun; 3(2):025011. PubMed ID: 18458368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material.
    Radin S; Ducheyne P
    Biomaterials; 2007 Mar; 28(9):1721-9. PubMed ID: 17184835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional coating to enhance antibacterial and bioactivity properties of titanium implants and its performance
    Doymus B; Kerem G; Yazgan Karatas A; Kok FN; Önder S
    J Biomater Appl; 2021 Jan; 35(6):655-669. PubMed ID: 33283583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion resistance and biocompatibility of a new porous surface for titanium implants.
    Simon M; Lagneau C; Moreno J; Lissac M; Dalard F; Grosgogeat B
    Eur J Oral Sci; 2005 Dec; 113(6):537-45. PubMed ID: 16324146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-biofilm properties of chitosan-coated surfaces.
    Carlson RP; Taffs R; Davison WM; Stewart PS
    J Biomater Sci Polym Ed; 2008; 19(8):1035-46. PubMed ID: 18644229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of hydroxyapatite nanocrystals on early bone formation surrounding dental implants.
    Svanborg LM; Hoffman M; Andersson M; Currie F; Kjellin P; Wennerberg A
    Int J Oral Maxillofac Surg; 2011 Mar; 40(3):308-15. PubMed ID: 21111575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hot isostatic pressing-processed hydroxyapatite-coated titanium implants: light microscopic and scanning electron microscopy investigations.
    Wie H; Herø H; Solheim T
    Int J Oral Maxillofac Implants; 1998; 13(6):837-44. PubMed ID: 9857595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenetic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD.
    Ma K; Cai X; Zhou Y; Zhang Z; Jiang T; Wang Y
    Biomed Mater; 2014 Feb; 9(1):015008. PubMed ID: 24448607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides.
    Yoshinari M; Kato T; Matsuzaka K; Hayakawa T; Shiba K
    Biofouling; 2010 Jan; 26(1):103-10. PubMed ID: 20390560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.