These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 21370493)

  • 1. Pleuroperitoneal canal closure and the fetal adrenal gland.
    Hayashi S; Fukuzawa Y; Rodríguez-Vázquez JF; Cho BH; Verdugo-López S; Murakami G; Nakano T
    Anat Rec (Hoboken); 2011 Apr; 294(4):633-44. PubMed ID: 21370493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pleuroperitoneal canal closure in the rat.
    Gattone VH; Morse DE
    Anat Rec; 1984 Mar; 208(3):445-60. PubMed ID: 6721236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoesophagus and other fascial structures of the abdominal and lower thoracic esophagus: a histological study using human embryos and fetuses.
    Hwang SE; Kim JH; Bae SI; Rodríguez-Vázquez JF; Murakami G; Cho BH
    Anat Cell Biol; 2014 Dec; 47(4):227-35. PubMed ID: 25548720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A scanning electron microscopic study on the pathogenesis of the posterolateral diaphragmatic hernia.
    Gattone VH; Morse DE
    J Submicrosc Cytol; 1982 Jul; 14(3):483-90. PubMed ID: 7175985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Anatomical background of low back pain: variability and degeneration of the lumbar spinal canal and intervertebral disc].
    van Roy P; Barbaix E; Clarijs JP; Mense S
    Schmerz; 2001 Dec; 15(6):418-24. PubMed ID: 11793145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of the ligament of Treitz likely depends on its fetal topographical relationship with the left adrenal gland and liver caudate lobe as well as the developing lymphatic tissues: a histological study using human fetuses.
    Yang JD; Ishikawa K; Hwang HP; Yu HC; Rodríguez-Vázquez JF; Murakami G; Cho BH
    Surg Radiol Anat; 2013 Jan; 35(1):25-38. PubMed ID: 22777511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of chromaffin cells in the developing adrenal gland of Testudo hermanni.
    Accordi F; Chimenti C; Gallo VP; Liguori R
    Anat Embryol (Berl); 2006 Aug; 211(4):283-91. PubMed ID: 16506068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryology of the eye and its adnexae.
    Barishak YR
    Dev Ophthalmol; 1992; 24():1-142. PubMed ID: 1628748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of GAP-43 (neuromodulin) during the development of the rat adrenal gland.
    Grant NJ; König F; Aunis D; Langley K
    Brain Res Dev Brain Res; 1994 Oct; 82(1-2):265-76. PubMed ID: 7842514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histological development of the equine fetal adrenal gland.
    Yamauchi S
    J Reprod Fertil Suppl; 1979; (27):487-91. PubMed ID: 289828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of the epidural space in human embryos.
    Patelska-Banaszewska M; Woźniak W
    Folia Morphol (Warsz); 2004 Aug; 63(3):273-9. PubMed ID: 15478101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of the embryologic development of the fascia used as the basis for pancreaticoduodenal mobilization.
    Cho BH; Kimura W; Song CH; Fujimiya M; Murakami G
    J Hepatobiliary Pancreat Surg; 2009; 16(6):824-31. PubMed ID: 19517056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Contribution of somite cells to the development of posterior limb buds in mice].
    Milaire J
    Arch Biol (Liege); 1976; 87(3):315-43. PubMed ID: 1020950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size of the fetal adrenal in bilateral renal agenesis.
    Droste S; Fitzsimmons J; Pascoe-Mason J; Shepard TH; Mack LA
    Obstet Gynecol; 1990 Aug; 76(2):206-9. PubMed ID: 2196498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of the suprarenal gland: surgical and anatomical considerations.
    Boglione L; Bondone C; Corno E; Gastaldo L; Borghi F; Gattolin A; Levi AC
    Panminerva Med; 2001 Mar; 43(1):33-7. PubMed ID: 11319516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis.
    Li Y; Zhang H; Choi SC; Litingtung Y; Chiang C
    Dev Biol; 2004 Jun; 270(1):214-31. PubMed ID: 15136151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNAP-25 regulation during adrenal gland development: comparison with differentiation markers and other SNAREs.
    Hepp R; Grant NJ; Aunis D; Langley K
    J Comp Neurol; 2000 Jun; 421(4):533-42. PubMed ID: 10842212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the harmonized growth pattern of fetal organs by multidimensional scaling and hierarchical clustering.
    Udagawa J; Yasuda A; Naito K; Otani H
    Congenit Anom (Kyoto); 2010 Sep; 50(3):175-85. PubMed ID: 20584035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human primitive meninges in and around the mesencephalic flexure and particularly their topographical relation to cranial nerves.
    Cho KH; Rodríguez-Vázquez JF; Han EH; Verdugo-López S; Murakami G; Cho BH
    Ann Anat; 2010 Sep; 192(5):322-8. PubMed ID: 20732798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that sclerotomal cells do not migrate medially during normal embryonic development of the rat.
    Gasser RF
    Am J Anat; 1979 Apr; 154(4):509-24. PubMed ID: 433794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.