These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 21370857)
1. Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data. Kern S; Singer H; Hollender J; Schwarzenbach RP; Fenner K Environ Sci Technol; 2011 Apr; 45(7):2833-41. PubMed ID: 21370857 [TBL] [Abstract][Full Text] [Related]
2. Investigating the presence of pesticide transformation products in water by using liquid chromatography-mass spectrometry with different mass analyzers. Hernández F; Ibáñez M; Pozo OJ; Sancho JV J Mass Spectrom; 2008 Feb; 43(2):173-84. PubMed ID: 17724783 [TBL] [Abstract][Full Text] [Related]
3. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures. Klecka G; Persoon C; Currie R Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664 [TBL] [Abstract][Full Text] [Related]
4. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models. Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738 [TBL] [Abstract][Full Text] [Related]
5. A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. Kern S; Baumgartner R; Helbling DE; Hollender J; Singer H; Loos MJ; Schwarzenbach RP; Fenner K J Environ Monit; 2010 Nov; 12(11):2100-11. PubMed ID: 20967365 [TBL] [Abstract][Full Text] [Related]
6. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants. Chiovarou ED; Siewicki TC Sci Total Environ; 2008 Jan; 389(1):87-100. PubMed ID: 17904201 [TBL] [Abstract][Full Text] [Related]
7. Field leaching of pesticides at five test sites in Hawaii: modeling flow and transport. Dusek J; Dohnal M; Vogel T; Ray C Pest Manag Sci; 2011 Dec; 67(12):1571-82. PubMed ID: 21681917 [TBL] [Abstract][Full Text] [Related]
8. Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass database. Gómez MJ; Gómez-Ramos MM; Malato O; Mezcua M; Férnandez-Alba AR J Chromatogr A; 2010 Nov; 1217(45):7038-54. PubMed ID: 20926086 [TBL] [Abstract][Full Text] [Related]
9. Quantification of acetochlor degradation in the unsaturated zone using two novel in situ field techniques: comparisons with laboratory-generated data and implications for groundwater risk assessments. Mills MS; Hill IR; Newcombe AC; Simmons ND; Vaughan PC; Verity AA Pest Manag Sci; 2001 Apr; 57(4):351-9. PubMed ID: 11455814 [TBL] [Abstract][Full Text] [Related]
10. Uncalibrated modelling of conservative tracer and pesticide leaching to groundwater: comparison of potential Tier II exposure assessment models. Fox GA; Sabbagh GJ; Chen W; Russell MH Pest Manag Sci; 2006 Jun; 62(6):537-50. PubMed ID: 16625679 [TBL] [Abstract][Full Text] [Related]
11. Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia. Hernández F; Portolés T; Ibáñez M; Bustos-López MC; Díaz R; Botero-Coy AM; Fuentes CL; Peñuela G Sci Total Environ; 2012 Nov; 439():249-59. PubMed ID: 23085466 [TBL] [Abstract][Full Text] [Related]
12. Methods for deriving pesticide aquatic life criteria. TenBrook PL; Tjeerdema RS; Hann P; Karkoski J Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939 [TBL] [Abstract][Full Text] [Related]
13. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment. Posen P; Lovett A; Hiscock K; Evers S; Ward R; Reid B Sci Total Environ; 2006 Aug; 367(2-3):641-52. PubMed ID: 16580707 [TBL] [Abstract][Full Text] [Related]
14. Quantification and confirmation of anionic, cationic and neutral pesticides and transformation products in water by on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. Marín JM; Sancho JV; Pozo OJ; López FJ; Hernández F J Chromatogr A; 2006 Nov; 1133(1-2):204-14. PubMed ID: 16970959 [TBL] [Abstract][Full Text] [Related]
15. An appraisal of methods for measurement of pesticide transformation in the groundwater zone. Leistra M; Smelt JH Pest Manag Sci; 2001 Apr; 57(4):333-40. PubMed ID: 11455812 [TBL] [Abstract][Full Text] [Related]
16. Pesticide distribution in an agricultural environment in Argentina. Loewy RM; Monza LB; Kirs VE; Savini MC J Environ Sci Health B; 2011; 46(8):662-70. PubMed ID: 21806463 [TBL] [Abstract][Full Text] [Related]
17. Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin. Hildebrandt A; Lacorte S; Barceló D Anal Bioanal Chem; 2007 Feb; 387(4):1459-68. PubMed ID: 17211597 [TBL] [Abstract][Full Text] [Related]
18. Prediction of pesticide concentrations found in rivers in the UK. Brown CD; Bellamy PH; Dubus IG Pest Manag Sci; 2002 Apr; 58(4):363-73. PubMed ID: 11975184 [TBL] [Abstract][Full Text] [Related]
19. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. von der Ohe PC; Dulio V; Slobodnik J; De Deckere E; Kühne R; Ebert RU; Ginebreda A; De Cooman W; Schüürmann G; Brack W Sci Total Environ; 2011 May; 409(11):2064-77. PubMed ID: 21414651 [TBL] [Abstract][Full Text] [Related]
20. Determination of pesticide transformation products: a review of extraction and detection methods. Martínez Vidal JL; Plaza-Bolaños P; Romero-González R; Garrido Frenich A J Chromatogr A; 2009 Oct; 1216(40):6767-88. PubMed ID: 19720377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]