These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 21370916)
21. Facilitated photochemical cleavage of benzylic C-O bond. Application to photolabile hydroxyl-protecting group design. Wang P; Zhou L; Zhang X; Liang X Chem Commun (Camb); 2010 Mar; 46(9):1514-6. PubMed ID: 20162166 [TBL] [Abstract][Full Text] [Related]
22. Toward the development of new photolabile protecting groups that can rapidly release bioactive compounds upon photolysis with visible light. Banerjee A; Grewer C; Ramakrishnan L; Jäger J; Gameiro A; Breitinger HG; Gee KR; Carpenter BK; Hess GP J Org Chem; 2003 Oct; 68(22):8361-7. PubMed ID: 14575458 [TBL] [Abstract][Full Text] [Related]
23. Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization. Schulte AM; Alachouzos G; Szymański W; Feringa BL J Am Chem Soc; 2022 Jul; 144(27):12421-12430. PubMed ID: 35775744 [TBL] [Abstract][Full Text] [Related]
24. Structurally simple benzyl-type photolabile protecting groups for direct release of alcohols and carboxylic acids. Wang P; Lu W; Devalankar DA; Ding Z Org Lett; 2015 May; 17(9):2114-7. PubMed ID: 25879582 [TBL] [Abstract][Full Text] [Related]
25. Intramolecular sensitization of photocleavage of the photolabile 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) protecting group: photoproducts and photokinetics of the release of nucleosides. Wöll D; Smirnova J; Galetskaya M; Prykota T; Bühler J; Stengele KP; Pfleiderer W; Steiner UE Chemistry; 2008; 14(21):6490-7. PubMed ID: 18537211 [TBL] [Abstract][Full Text] [Related]
27. Photocleavable Protecting Groups Using a Sulfite Self-Immolative Linker for High Uncaging Quantum Yield and Aqueous Solubility. Schulte AM; Vivien Q; Leene JH; Alachouzos G; Feringa BL; Szymanski W Angew Chem Int Ed Engl; 2024 Nov; 63(47):e202411380. PubMed ID: 39140843 [TBL] [Abstract][Full Text] [Related]
28. Formation of tetra(ethylene oxide) terminated Si-C linked monolayers and their derivatization with glycine: an example of a generic strategy for the immobilization of biomolecules on silicon. Böcking T; Kilian KA; Hanley T; Ilyas S; Gaus K; Gal M; Gooding JJ Langmuir; 2005 Nov; 21(23):10522-9. PubMed ID: 16262316 [TBL] [Abstract][Full Text] [Related]
29. Convenient and efficient synthesis of functionalized oligopyridine ligands bearing accessory pyrromethene-BF2 fluorophores. Ulrich G; Ziessel R J Org Chem; 2004 Mar; 69(6):2070-83. PubMed ID: 15058955 [TBL] [Abstract][Full Text] [Related]
30. Wavelength-selective photoactivatable protecting groups for thiols. Kotzur N; Briand B; Beyermann M; Hagen V J Am Chem Soc; 2009 Nov; 131(46):16927-31. PubMed ID: 19863095 [TBL] [Abstract][Full Text] [Related]
31. A new protocol for the in situ generation of aromatic, heteroaromatic, and unsaturated diazo compounds and its application in catalytic and asymmetric epoxidation of carbonyl compounds. Extensive studies to map out scope and limitations, and rationalization of diastereo- and enantioselectivities. Aggarwal VK; Alonso E; Bae I; Hynd G; Lydon KM; Palmer MJ; Patel M; Porcelloni M; Richardson J; Stenson RA; Studley JR; Vasse JL; Winn CL J Am Chem Soc; 2003 Sep; 125(36):10926-40. PubMed ID: 12952474 [TBL] [Abstract][Full Text] [Related]
32. 1-[3-(Diethylamino)phenyl]ethyl (DEAPE): A Photolabile Protecting Group for Hydroxyl and Carboxyl Groups. Ding X; Wang P J Org Chem; 2018 Sep; 83(18):10736-10742. PubMed ID: 30136582 [TBL] [Abstract][Full Text] [Related]
33. Photocaging strategy for functionalisation of oligonucleotides and its applications for oligonucleotide labelling and cyclisation. Su M; Wang J; Tang X Chemistry; 2012 Jul; 18(31):9628-37. PubMed ID: 22767502 [TBL] [Abstract][Full Text] [Related]
34. The fate of the contact ion pair determines the photochemistry of coumarin-based photocleavable protecting groups. Schulte AM; Alachouzos G; Szymanski W; Feringa BL Chem Sci; 2024 Feb; 15(6):2062-2073. PubMed ID: 38332822 [TBL] [Abstract][Full Text] [Related]
35. Reinvigorating Photo-Activated R-Alkoxysilanes Containing 2-Nitrobenzyl Protecting Groups as Stable Precursors for Photo-Driven Si-O Bond Formation in Polymerization and Surface Modification. Rashed MR; Sims CB; Mahbub S; Hu NH; Greene AN; Espitia Armenta H; Iarussi RA; Furgal JC ACS Omega; 2024 Oct; 9(39):40650-40664. PubMed ID: 39372029 [TBL] [Abstract][Full Text] [Related]
36. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes. Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631 [TBL] [Abstract][Full Text] [Related]
37. Tandem Systems for Two-Photon Uncaging of Bioactive Molecules. Klausen M; Dubois V; Verlhac JB; Blanchard-Desce M Chempluschem; 2019 Jun; 84(6):589-598. PubMed ID: 31944026 [TBL] [Abstract][Full Text] [Related]
38. Quinoline-Based Photolabile Protection Strategy Facilitates Efficient Protein Assembly. Wang S; Zhou Q; Li Y; Wei B; Liu X; Zhao J; Ye F; Zhou Z; Ding B; Wang P J Am Chem Soc; 2022 Jan; 144(3):1232-1242. PubMed ID: 35034454 [TBL] [Abstract][Full Text] [Related]
39. Chemical synthesis of carbohydrates and their surface immobilization: a brief introduction. Werz DB Methods Mol Biol; 2012; 808():13-29. PubMed ID: 22057515 [TBL] [Abstract][Full Text] [Related]
40. Reaction of the acetals with TESOTf-base combination; speculation of the intermediates and efficient mixed acetal formation. Fujioka H; Okitsu T; Sawama Y; Murata N; Li R; Kita Y J Am Chem Soc; 2006 May; 128(17):5930-8. PubMed ID: 16637661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]