BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21370931)

  • 21. MicroRNA166 controls root and nodule development in Medicago truncatula.
    Boualem A; Laporte P; Jovanovic M; Laffont C; Plet J; Combier JP; Niebel A; Crespi M; Frugier F
    Plant J; 2008 Jun; 54(5):876-87. PubMed ID: 18298674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Medicago truncatula small protein proteome and peptidome.
    Zhang K; McKinlay C; Hocart CH; Djordjevic MA
    J Proteome Res; 2006 Dec; 5(12):3355-67. PubMed ID: 17137337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula.
    Rodríguez-Celma J; Lin WD; Fu GM; Abadía J; López-Millán AF; Schmidt W
    Plant Physiol; 2013 Jul; 162(3):1473-85. PubMed ID: 23735511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species.
    Recorbet G; Valot B; Robert F; Gianinazzi-Pearson V; Dumas-Gaudot E
    Fungal Genet Biol; 2010 Jul; 47(7):608-18. PubMed ID: 20226871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induced activity of adenine phosphoribosyltransferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production.
    Itai R; Suzuki K; Yamaguchi H; Nakanishi H; Nishizawa NK; Yoshimura E; Mori S
    J Exp Bot; 2000 Jul; 51(348):1179-88. PubMed ID: 10937693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1.
    Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F
    Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula.
    Gargantini PR; Gonzalez-Rizzo S; Chinchilla D; Raices M; Giammaria V; Ulloa RM; Frugier F; Crespi MD
    Plant J; 2006 Dec; 48(6):843-56. PubMed ID: 17132148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula.
    Stumpe M; Carsjens JG; Stenzel I; Göbel C; Lang I; Pawlowski K; Hause B; Feussner I
    Phytochemistry; 2005 Apr; 66(7):781-91. PubMed ID: 15797604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis.
    García MJ; Lucena C; Romera FJ; Alcántara E; Pérez-Vicente R
    J Exp Bot; 2010 Sep; 61(14):3885-99. PubMed ID: 20627899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron deficient Medicago scutellata grown in nutrient solution at high pH accumulates and secretes large amounts of flavins.
    Gheshlaghi Z; Luis-Villarroya A; Álvarez-Fernández A; Khorassani R; Abadía J
    Plant Sci; 2021 Feb; 303():110664. PubMed ID: 33487332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation of nodulation in Medicago truncatula by low concentrations of ammonium: quantitative reverse transcription PCR analysis of selected genes.
    Fei H; Vessey JK
    Physiol Plant; 2009 Mar; 135(3):317-30. PubMed ID: 19140888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.
    Seddas PM; Arias CM; Arnould C; van Tuinen D; Godfroy O; Benhassou HA; Gouzy J; Morandi D; Dessaint F; Gianinazzi-Pearson V
    Mol Plant Microbe Interact; 2009 Mar; 22(3):341-51. PubMed ID: 19245328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production.
    Seo HY; Chang YJ; Chung YJ; Kim KS
    J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.
    Hsieh EJ; Waters BM
    J Exp Bot; 2016 Oct; 67(19):5671-5685. PubMed ID: 27605716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A two-dimensional electrophoresis proteomic reference map and systematic identification of 1367 proteins from a cell suspension culture of the model legume Medicago truncatula.
    Lei Z; Elmer AM; Watson BS; Dixon RA; Mendes PJ; Sumner LW
    Mol Cell Proteomics; 2005 Nov; 4(11):1812-25. PubMed ID: 16048909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply.
    Rellán-Alvarez R; Andaluz S; Rodríguez-Celma J; Wohlgemuth G; Zocchi G; Alvarez-Fernández A; Fiehn O; López-Millán AF; Abadía J
    BMC Plant Biol; 2010 Jun; 10():120. PubMed ID: 20565974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomic characterization of iron deficiency responses in Cucumis sativus L. roots.
    Donnini S; Prinsi B; Negri AS; Vigani G; Espen L; Zocchi G
    BMC Plant Biol; 2010 Dec; 10():268. PubMed ID: 21122124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased de novo riboflavin synthesis and hydrolysis of FMN are involved in riboflavin secretion from Hyoscyamus albus hairy roots under iron deficiency.
    Higa A; Khandakar J; Mori Y; Kitamura Y
    Plant Physiol Biochem; 2012 Sep; 58():166-73. PubMed ID: 22819862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indole-3-acetaldoxime delays root iron-deficiency responses and modify auxin homeostasis in Medicago truncatula.
    Roman A; Montenegro J; Fraile L; Urra M; Buezo J; Cornejo A; Moran JF; Gogorcena Y
    Plant Sci; 2023 Jul; 332():111718. PubMed ID: 37105378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.