BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 21370987)

  • 21. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.
    Li JF; Zhang YJ; Ding SY; Panneerselvam R; Tian ZQ
    Chem Rev; 2017 Apr; 117(7):5002-5069. PubMed ID: 28271881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods.
    Zong S; Wang Z; Yang J; Wang C; Xu S; Cui Y
    Talanta; 2012 Aug; 97():368-75. PubMed ID: 22841094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Fabrication of reproducible surface enhanced Raman scattering substrate and its application].
    Ni DD; Wang WW; Yao JL; Zhang XJ; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):394-7. PubMed ID: 21510389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools.
    Gong JL; Liang Y; Huang Y; Chen JW; Jiang JH; Shen GL; Yu RQ
    Biosens Bioelectron; 2007 Feb; 22(7):1501-7. PubMed ID: 16971110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silica coated gold nanoaggregates prepared by reverse microemulsion method: dual mode probes for multiplex immunoassay using SERS and fluorescence.
    Wang Z; Zong S; Chen H; Wu H; Cui Y
    Talanta; 2011 Oct; 86():170-7. PubMed ID: 22063527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold nanoparticles assembling on smooth silver spheres for surface-enhanced Raman spectroscopy.
    Xia W; Sha J; Fang Y; Lu R; Luo Y; Wang Y
    Langmuir; 2012 Mar; 28(12):5444-9. PubMed ID: 22390727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.
    Tognalli NG; Cortés E; Hernández-Nieves AD; Carro P; Usaj G; Balseiro CA; Vela ME; Salvarezza RC; Fainstein A
    ACS Nano; 2011 Jul; 5(7):5433-43. PubMed ID: 21675769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper.
    Kim K; Lee HS
    J Phys Chem B; 2005 Oct; 109(40):18929-34. PubMed ID: 16853437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled stepwise-synthesis of core-shell Au@MIL-100 (Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection.
    Liao J; Wang D; Liu A; Hu Y; Li G
    Analyst; 2015 Dec; 140(24):8165-71. PubMed ID: 26568098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling.
    Shen J; Zhu Y; Yang X; Zong J; Li C
    Langmuir; 2013 Jan; 29(2):690-5. PubMed ID: 23206276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: synthesis and application in detecting tetracycline.
    Li R; Zhang H; Chen QW; Yan N; Wang H
    Analyst; 2011 Jun; 136(12):2527-32. PubMed ID: 21523294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gold and magnetic oxide/gold core/shell nanoparticles as bio-functional nanoprobes.
    Lim II; Njoki PN; Park HY; Wang X; Wang L; Mott D; Zhong CJ
    Nanotechnology; 2008 Jul; 19(30):305102. PubMed ID: 21828754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Au nanoparticle-encapsulated hydrogel substrates for robust and reproducible SERS measurement.
    Shin K; Ryu K; Lee H; Kim K; Chung H; Sohn D
    Analyst; 2013 Feb; 138(3):932-8. PubMed ID: 23232290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)-silver(shell) nanoparticles and their surface-enhanced Raman scattering properties.
    Sugawa K; Tanoue Y; Ube T; Yanagida S; Yamamuro T; Kusaka Y; Ushijima H; Akiyama T
    Photochem Photobiol Sci; 2014 Jan; 13(1):82-91. PubMed ID: 24220219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate.
    Kim K; Yoon JK
    J Phys Chem B; 2005 Nov; 109(44):20731-6. PubMed ID: 16853687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silver coated platinum core-shell nanostructures on etched Si nanowires: atomic layer deposition (ALD) processing and application in SERS.
    Sivakov VA; Höflich K; Becker M; Berger A; Stelzner T; Elers KE; Pore V; Ritala M; Christiansen SH
    Chemphyschem; 2010 Jun; 11(9):1995-2000. PubMed ID: 20446286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.