These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 21370987)

  • 61. Synthesis and characterization of a disulfide reporter molecule for enhancing pH measurements based on surface-enhanced Raman scattering.
    Lawson L; Huser T
    Anal Chem; 2012 Apr; 84(8):3574-80. PubMed ID: 22455337
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bifunctional Au@Pt core-shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy.
    Bao ZY; Lei DY; Jiang R; Liu X; Dai J; Wang J; Chan HL; Tsang YH
    Nanoscale; 2014 Aug; 6(15):9063-70. PubMed ID: 24976250
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy.
    Bao F; Yao JL; Gu RA
    Langmuir; 2009 Sep; 25(18):10782-7. PubMed ID: 19552373
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces.
    Krajczewski J; Kołątaj K; Pietrasik S; Kudelski A
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():1-7. PubMed ID: 29202354
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R; Fang Y
    J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Surface-enhanced Raman scattering from magneto-metal nanoparticle assemblies.
    Qu H; Lai Y; Niu D; Sun S
    Anal Chim Acta; 2013 Feb; 763():38-42. PubMed ID: 23340284
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A simple and highly efficient route to the synthesis of NaLnF4-Ag hybrid nanorice with excellent SERS performances.
    Zhang M; Zhao A; Li D; Sun H; Wang D; Guo H; Gao Q; Gan Z; Tao W
    Analyst; 2012 Oct; 137(19):4584-92. PubMed ID: 22898563
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing.
    Lin WH; Lu YH; Hsu YJ
    J Colloid Interface Sci; 2014 Mar; 418():87-94. PubMed ID: 24461822
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles.
    Neng J; Harpster MH; Wilson WC; Johnson PA
    Biosens Bioelectron; 2013 Mar; 41():316-21. PubMed ID: 23021841
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Surface-enhanced Raman spectroscopic detection of Bacillus subtilis spores using gold nanoparticle based substrates.
    Cheng HW; Chen YY; Lin XX; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chim Acta; 2011 Nov; 707(1-2):155-63. PubMed ID: 22027133
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Green synthesis of large-scale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates.
    Chen B; Meng G; Huang Q; Huang Z; Xu Q; Zhu C; Qian Y; Ding Y
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15667-75. PubMed ID: 25162796
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantitatively Revealing the Anomalous Enhancement in Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy Using Single-Nanoparticle Spectroscopy.
    Hu S; Wang J; Zhang YJ; Wen BY; Wu SS; Radjenovic PM; Yang Z; Ren B; Li JF
    ACS Nano; 2022 Dec; 16(12):21388-21396. PubMed ID: 36468912
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass.
    Bian J; Li Q; Huang C; Guo Y; Zaw M; Zhang RQ
    Phys Chem Chem Phys; 2015 Jun; 17(22):14849-55. PubMed ID: 25980466
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Raman spectroscopy on transition metals.
    Ren B; Liu GK; Lian XB; Yang ZL; Tian ZQ
    Anal Bioanal Chem; 2007 May; 388(1):29-45. PubMed ID: 17318524
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A General Strategy to Prepare TiO(2)-core Gold-shell Nanoparticles as SERS-tags.
    Li W; Guo Y; Zhang P
    J Phys Chem C Nanomater Interfaces; 2010 Apr; 114(16):7263-7268. PubMed ID: 20473348
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fabrication of a Au nanoporous film by self-organization of networked ultrathin nanowires and its application as a surface-enhanced Raman scattering substrate for single-molecule detection.
    Liu R; Liu JF; Zhou XX; Sun MT; Jiang GB
    Anal Chem; 2011 Dec; 83(23):9131-7. PubMed ID: 22017457
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates.
    Liu L; Yang H; Ren X; Tang J; Li Y; Zhang X; Cheng Z
    Nanoscale; 2015 Mar; 7(12):5147-51. PubMed ID: 25721784
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets.
    Sun S; Wu P
    Phys Chem Chem Phys; 2011 Dec; 13(47):21116-20. PubMed ID: 22020382
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Highly sensitive detection of blood by surface enhanced Raman scattering.
    Boyd S; Bertino MF; Ye D; White LS; Seashols SJ
    J Forensic Sci; 2013 May; 58(3):753-6. PubMed ID: 23488826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.