These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 2137161)

  • 1. Interactions of the complex secretory vesicle binding protein chromobindin A with nucleotides.
    Martin WH; Creutz CE
    J Neurochem; 1990 Feb; 54(2):612-9. PubMed ID: 2137161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromobindin A. A Ca2+ and ATP regulated chromaffin granule binding protein.
    Martin WH; Creutz CE
    J Biol Chem; 1987 Feb; 262(6):2803-10. PubMed ID: 3818622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromobindin A, a Ca2+- and ATP-dependent chromaffin granule-binding protein, is found in a variety of tissues and in yeast.
    Martin WH; Fromer E; Creutz CE
    Biochem Biophys Res Commun; 1989 Nov; 165(1):37-42. PubMed ID: 2686647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the major chromaffin granule-binding protein, chromobindin A, as the cytosolic chaperonin CCT (chaperonin containing TCP-1).
    Creutz CE; Liou A; Snyder SL; Brownawell A; Willison K
    J Biol Chem; 1994 Dec; 269(51):32035-8. PubMed ID: 7798195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of chromaffin granule-binding proteins. Relationship of the chromobindins to calelectrin, synhibin, and the tyrosine kinase substrates p35 and p36.
    Creutz CE; Zaks WJ; Hamman HC; Crane S; Martin WH; Gould KL; Oddie KM; Parsons SJ
    J Biol Chem; 1987 Feb; 262(4):1860-8. PubMed ID: 2948960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on Mg2+-dependent ATPase in bovine adrenal chromaffin granules. With special reference to the effect of inhibitors and energy coupling.
    Grønberg M; Flatmark T
    Eur J Biochem; 1987 Apr; 164(1):1-8. PubMed ID: 2881784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of a chromaffin granule-binding protein by protein kinase C.
    Summers TA; Creutz CE
    J Biol Chem; 1985 Feb; 260(4):2437-43. PubMed ID: 3156130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of a chromaffin granule-binding protein in stimulated chromaffin cells.
    Michener ML; Dawson WB; Creutz CE
    J Biol Chem; 1986 May; 261(14):6548-55. PubMed ID: 3700408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of N-ethylmaleimide-sensitive ATPase from chromaffin granule membranes.
    Cidon S; Nelson N
    J Biol Chem; 1986 Jul; 261(20):9222-7. PubMed ID: 3013878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide and bivalent cation specificity of the insulin-granule proton translocase.
    Hutton JC; Peshavaria M
    Biochem J; 1983 Jan; 210(1):235-42. PubMed ID: 6303313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a DCCD-binding protein from bovine chromaffin-granule membranes.
    Sutton R; Apps DK
    FEBS Lett; 1981 Jul; 130(1):103-6. PubMed ID: 6456934
    [No Abstract]   [Full Text] [Related]  

  • 12. Presence of ectonucleotidases in cultured chromaffin cells: hydrolysis of extracellular adenine nucleotides.
    Torres M; Pintor J; Miras-Portugal MT
    Arch Biochem Biophys; 1990 May; 279(1):37-44. PubMed ID: 2159757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unfolded proteins stimulate molecular chaperone Hsc70 ATPase by accelerating ADP/ATP exchange.
    Sadis S; Hightower LE
    Biochemistry; 1992 Oct; 31(39):9406-12. PubMed ID: 1356434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 8-Azido-adenine nucleotides as substrates of ecto-nucleotidases in chromaffin cells: inhibitory effect of photoactivation.
    RodrĂ­guez-Pascual F; Torres M; Miras-Portugal MT
    Arch Biochem Biophys; 1993 Nov; 306(2):420-6. PubMed ID: 8215445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Mg-ATP in norepinephrine biosynthesis in intact chromaffin granules.
    Dhariwal KR; Shirvan MH; Levine M
    J Neurochem; 1994 Jan; 62(1):355-60. PubMed ID: 8263536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity chromatography of H+-translocating adenosine triphosphatase isolated by chloroform extraction of Rhodospirillum rubrum chromatophores. Modification of binding affinity by divalent cations and activating anions.
    Webster GD; Jackson JB
    Biochim Biophys Acta; 1978 Jul; 503(1):135-54. PubMed ID: 27212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of the ATPase solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius.
    Konishi J; Wakagi T; Oshima T; Yoshida M
    J Biochem; 1987 Dec; 102(6):1379-87. PubMed ID: 2966145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of intrinsic ATPase inhibitor to mitochondrial ATPase--stoichiometry of binding of nucleotides, inhibitor, and enzyme.
    Hashimoto T; Negawa Y; Tagawa K
    J Biochem; 1981 Oct; 90(4):1151-7. PubMed ID: 6458600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-dependent [3H]Met-enkephalin uptake by bovine adrenal chromaffin granule membrane.
    Takeda F; Takeda M; Shimada A; Konno K
    Brain Res; 1985 Oct; 344(2):220-6. PubMed ID: 4041872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in either nucleotide-binding site of P-glycoprotein (Mdr3) prevent vanadate trapping of nucleotide at both sites.
    Urbatsch IL; Beaudet L; Carrier I; Gros P
    Biochemistry; 1998 Mar; 37(13):4592-602. PubMed ID: 9521779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.