These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21371923)

  • 1. Fast fat-suppressed reduced field-of-view temperature mapping using 2DRF excitation pulses.
    Yuan J; Mei CS; Madore B; McDannold NJ; Panych LP
    J Magn Reson; 2011 May; 210(1):38-43. PubMed ID: 21371923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced field-of-view DWI with robust fat suppression and unrestricted slice coverage using tilted 2D RF excitation.
    Banerjee S; Nishimura DG; Shankaranarayanan A; Saritas EU
    Magn Reson Med; 2016 Dec; 76(6):1668-1676. PubMed ID: 27654126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional spatially-selective RF excitation pulses in echo-planar imaging.
    Rieseberg S; Frahm J; Finsterbusch J
    Magn Reson Med; 2002 Jun; 47(6):1186-93. PubMed ID: 12111965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced field-of-view single-shot fast spin echo imaging using two-dimensional spatially selective radiofrequency pulses.
    Yuan J; Zhao TC; Tang Y; Panych LP
    J Magn Reson Imaging; 2010 Jul; 32(1):242-8. PubMed ID: 20578031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D RF pulse design for optimized reduced field-of-view imaging at 1.5T and 3T.
    Eren OC; Barlas BA; Saritas EU
    Magn Reson Imaging; 2022 Jan; 85():210-216. PubMed ID: 34688847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sheared two-dimensional radiofrequency excitation for off-resonance robustness and fat suppression in reduced field-of-view imaging.
    Barlas BA; Bahadir CD; Kafali SG; Yilmaz U; Saritas EU
    Magn Reson Med; 2022 Dec; 88(6):2504-2519. PubMed ID: 36000548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast-spin-echo imaging of inner fields-of-view with 2D-selective RF excitations.
    Finsterbusch J
    J Magn Reson Imaging; 2010 Jun; 31(6):1530-7. PubMed ID: 20512911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous fat-free isotropic 3D anatomical imaging and T
    Colotti R; Omoumi P; van Heeswijk RB; Bastiaansen JAM
    J Magn Reson Imaging; 2019 May; 49(5):1275-1284. PubMed ID: 30318667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast lipid-suppressed MR temperature mapping with echo-shifted gradient-echo imaging and spectral-spatial excitation.
    de Zwart JA; Vimeux FC; Delalande C; Canioni P; Moonen CT
    Magn Reson Med; 1999 Jul; 42(1):53-9. PubMed ID: 10398950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional neuroimaging of inner fields-of-view with 2D-selective RF excitations.
    Finsterbusch J
    Magn Reson Imaging; 2013 Sep; 31(7):1228-35. PubMed ID: 23602726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 2DRF pulse sequence for bolus tracking in hyperpolarized 13C imaging.
    Tang S; Jiang W; Chen HY; Bok R; Vigneron DB; Larson PE
    Magn Reson Med; 2015 Aug; 74(2):506-12. PubMed ID: 25154961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepControl: 2DRF pulses facilitating
    Vinding MS; Aigner CS; Schmitter S; Lund TE
    Magn Reson Med; 2021 Jun; 85(6):3308-3317. PubMed ID: 33480029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially varying fat-water excitation using short 2DRF pulses.
    Yuan J; Madore B; Panych LP
    Magn Reson Med; 2010 Apr; 63(4):1092-7. PubMed ID: 20373411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hadamard slice encoding for reduced-FOV diffusion-weighted imaging.
    Saritas EU; Lee D; Çukur T; Shankaranarayanan A; Nishimura DG
    Magn Reson Med; 2014 Nov; 72(5):1277-90. PubMed ID: 24265013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D flow imaging with UNFOLD in a reduced FOV.
    Wink C; Bassenge JP; Ferrazzi G; Schaeffter T; Schmitter S
    Magn Reson Med; 2020 Jul; 84(1):327-338. PubMed ID: 31873954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved clinical echo-planar MRI using spatial-spectral excitation.
    Schick F; Forster J; Machann J; Kuntz R; Claussen CD
    J Magn Reson Imaging; 1998; 8(4):960-7. PubMed ID: 9702899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient-echo line scan imaging using 2D-selective RF excitation.
    Finsterbusch J; Frahm J
    J Magn Reson; 2000 Nov; 147(1):17-25. PubMed ID: 11042043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of fast MR thermometry at 1.5 T with gradient-echo echo planar imaging sequences: phantom and clinical feasibility studies.
    Cernicanu A; Lepetit-Coiffe M; Roland J; Becker CD; Terraz S
    NMR Biomed; 2008 Oct; 21(8):849-58. PubMed ID: 18574794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method.
    Diakite M; Odéen H; Todd N; Payne A; Parker DL
    Magn Reson Med; 2014 Jul; 72(1):178-87. PubMed ID: 23901014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiresolution MRI temperature monitoring in a reduced field of view.
    Aljallad MH; Yuan J; Pilatou MC; McDannold NJ; Panych LP
    Magn Reson Imaging; 2011 Nov; 29(9):1205-14. PubMed ID: 21908128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.