These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 2137204)
21. Reversible high hydrostatic pressure inactivation of phosphofructokinase from Escherichia coli. Deville-Bonne D; Else AJ Eur J Biochem; 1991 Sep; 200(3):747-50. PubMed ID: 1833191 [TBL] [Abstract][Full Text] [Related]
22. Disentangling the web of allosteric communication in a homotetramer: heterotropic activation in phosphofructokinase from Escherichia coli. Fenton AW; Paricharttanakul NM; Reinhart GD Biochemistry; 2004 Nov; 43(44):14104-10. PubMed ID: 15518560 [TBL] [Abstract][Full Text] [Related]
23. Yeast phosphofructokinase: pre-steady-state and stationary kinetic studies on a cross-linked enzyme form. Kriegel T; Bär J; Schellenberger W; König S; Behlke J; Hübner G; Kopperschläger G Biomed Biochim Acta; 1990; 49(5):317-25. PubMed ID: 2148671 [TBL] [Abstract][Full Text] [Related]
24. Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme. Bertrand T; Briozzo P; Assairi L; Ofiteru A; Bucurenci N; Munier-Lehmann H; Golinelli-Pimpaneau B; Bârzu O; Gilles AM J Mol Biol; 2002 Feb; 315(5):1099-110. PubMed ID: 11827479 [TBL] [Abstract][Full Text] [Related]
25. Site-directed mutagenesis of two highly conserved residues near the active site of phosphofructo-1-kinase. Zheng RL; Kemp RG Biochem Biophys Res Commun; 1994 Mar; 199(2):577-81. PubMed ID: 8135798 [TBL] [Abstract][Full Text] [Related]
26. Chemical modification of SH groups of E. coli phosphofructokinase-2 induces subunit dissociation: monomers are inactive but preserve ligand binding properties. Guixé V Arch Biochem Biophys; 2000 Apr; 376(2):313-9. PubMed ID: 10775417 [TBL] [Abstract][Full Text] [Related]
27. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase. Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134 [TBL] [Abstract][Full Text] [Related]
28. Evolutionary reengineering of the phosphofructokinase active site: ARG-104 does not stabilize the transition state in 6-phosphofructo-2-kinase. Kurland I; Chapman B; Lee YH; Pilkis S Biochem Biophys Res Commun; 1995 Aug; 213(2):663-72. PubMed ID: 7646523 [TBL] [Abstract][Full Text] [Related]
29. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism. McVey CE; Walsh MA; Dodson GG; Wilson KS; Brannigan JA J Mol Biol; 2001 Oct; 313(1):139-50. PubMed ID: 11601852 [TBL] [Abstract][Full Text] [Related]
30. An essential methionine residue involved in substrate binding by phosphofructokinases. Wang X; Deng Z; Kemp RG Biochem Biophys Res Commun; 1998 Sep; 250(2):466-8. PubMed ID: 9753654 [TBL] [Abstract][Full Text] [Related]
31. On the functional role of Arg172 in substrate binding and allosteric transition in Escherichia coli glucosamine-6-phosphate deaminase. Lucumí-Moreno A; Calcagno ML Arch Biochem Biophys; 2005 Oct; 442(1):41-8. PubMed ID: 16168949 [TBL] [Abstract][Full Text] [Related]
32. A proteolyzed derivative of Escherichia coli phosphofructokinase is no longer sensitive to allosteric effectors and still shows cooperativity in substrate binding. Le Bras G; Garel JR Biochemistry; 1982 Dec; 21(26):6656-60. PubMed ID: 6218818 [TBL] [Abstract][Full Text] [Related]
33. The cooperativity and allosteric inhibition of Escherichia coli phosphofructokinase depend on the interaction between threonine-125 and ATP. Auzat I; Le Bras G; Garel JR Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5242-6. PubMed ID: 8202475 [TBL] [Abstract][Full Text] [Related]
34. Identification of residues of Escherichia coli phosphofructokinase that contribute to nucleotide binding and specificity. Wang X; Kemp RG Biochemistry; 1999 Apr; 38(14):4313-8. PubMed ID: 10194349 [TBL] [Abstract][Full Text] [Related]
35. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member. Parducci RE; Cabrera R; Baez M; Guixé V Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375 [TBL] [Abstract][Full Text] [Related]
36. A single point mutation leads to an instability of the hetero-octameric structure of yeast phosphofructokinase. Kirchberger J; Edelmann A; Kopperschläger G; Heinisch JJ Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):15-23. PubMed ID: 10377240 [TBL] [Abstract][Full Text] [Related]
37. Site-directed mutagenesis of a regulatory site of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 336 in allosteric behavior. Meyer CR; Bork JA; Nadler S; Yirsa J; Preiss J Arch Biochem Biophys; 1998 May; 353(1):152-9. PubMed ID: 9578610 [TBL] [Abstract][Full Text] [Related]
38. Phosphofructokinase: structure and control. Evans PR; Farrants GW; Hudson PJ Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):53-62. PubMed ID: 6115424 [TBL] [Abstract][Full Text] [Related]
39. Affinities of phosphorylated substrates for the E. coli tryptophan synthase alpha-subunit: roles of Ser-235 and helix-8' dipole. Sarker KD; Hardman JK Proteins; 1995 Feb; 21(2):130-9. PubMed ID: 7777488 [TBL] [Abstract][Full Text] [Related]
40. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes. Huang Y; Komoto J; Konishi K; Takata Y; Ogawa H; Gomi T; Fujioka M; Takusagawa F J Mol Biol; 2000 Apr; 298(1):149-62. PubMed ID: 10756111 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]