BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21372123)

  • 1. Differential functional roles of slow-wave and oscillatory-α activity in visual sensory cortex during anticipatory visual-spatial attention.
    Grent-'t-Jong T; Boehler CN; Kenemans JL; Woldorff MG
    Cereb Cortex; 2011 Oct; 21(10):2204-16. PubMed ID: 21372123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of temporal predictability in the anticipatory biasing of sensory cortex during visuospatial shifts of attention.
    Green JJ; McDonald JJ
    Psychophysiology; 2010 Nov; 47(6):1057-65. PubMed ID: 20477979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modality-specific sensory readiness for upcoming events revealed by slow cortical potentials.
    Bianco V; Perri RL; Berchicci M; Quinzi F; Spinelli D; Di Russo F
    Brain Struct Funct; 2020 Jan; 225(1):149-159. PubMed ID: 31784812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms?
    Banerjee S; Snyder AC; Molholm S; Foxe JJ
    J Neurosci; 2011 Jul; 31(27):9923-32. PubMed ID: 21734284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α oscillations related to anticipatory attention follow temporal expectations.
    Rohenkohl G; Nobre AC
    J Neurosci; 2011 Oct; 31(40):14076-84. PubMed ID: 21976492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anticipatory alpha oscillation predicts attentional selection and hemodynamic response.
    Zhao C; Guo J; Li D; Tao Y; Ding Y; Liu H; Song Y
    Hum Brain Mapp; 2019 Aug; 40(12):3606-3619. PubMed ID: 31062891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study.
    Kelly SP; Gomez-Ramirez M; Foxe JJ
    Eur J Neurosci; 2009 Dec; 30(11):2224-34. PubMed ID: 19930401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No Evidence for a Role of Spatially Modulated α-Band Activity in Tactile Remapping and Short-Latency, Overt Orienting Behavior.
    Ossandón JP; König P; Heed T
    J Neurosci; 2020 Nov; 40(47):9088-9102. PubMed ID: 33087476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity.
    Wildegger T; van Ede F; Woolrich M; Gillebert CR; Nobre AC
    J Neurophysiol; 2017 Mar; 117(3):1385-1394. PubMed ID: 28077669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateralized Suppression of Alpha-Band EEG Activity As a Mechanism of Target Processing.
    Bacigalupo F; Luck SJ
    J Neurosci; 2019 Jan; 39(5):900-917. PubMed ID: 30523067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Attentional Selection Modulates Early Visual Stimulus Processing Independently of Visual Alpha Modulations.
    Gundlach C; Moratti S; Forschack N; Müller MM
    Cereb Cortex; 2020 May; 30(6):3686-3703. PubMed ID: 31907512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations.
    Gould IC; Rushworth MF; Nobre AC
    J Neurophysiol; 2011 Mar; 105(3):1318-26. PubMed ID: 21228304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateralized alpha activity and slow potential shifts over visual cortex track the time course of both endogenous and exogenous orienting of attention.
    Keefe JM; Störmer VS
    Neuroimage; 2021 Jan; 225():117495. PubMed ID: 33184032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attentional selection of location and modality in vision and touch modulates low-frequency activity in associated sensory cortices.
    Bauer M; Kennett S; Driver J
    J Neurophysiol; 2012 May; 107(9):2342-51. PubMed ID: 22323628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two Oscillatory Correlates of Attention Control in the Alpha-Band with Distinct Consequences on Perceptual Gain and Metacognition.
    Trajkovic J; Di Gregorio F; Avenanti A; Thut G; Romei V
    J Neurosci; 2023 May; 43(19):3548-3556. PubMed ID: 37019621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One Thing Leads to Another: Anticipating Visual Object Identity Based on Associative-Memory Templates.
    Boettcher SEP; Stokes MG; Nobre AC; van Ede F
    J Neurosci; 2020 May; 40(20):4010-4020. PubMed ID: 32284338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.
    Thut G; Nietzel A; Brandt SA; Pascual-Leone A
    J Neurosci; 2006 Sep; 26(37):9494-502. PubMed ID: 16971533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salient, Irrelevant Sounds Reflexively Induce Alpha Rhythm Desynchronization in Parallel with Slow Potential Shifts in Visual Cortex.
    Störmer V; Feng W; Martinez A; McDonald J; Hillyard S
    J Cogn Neurosci; 2016 Mar; 28(3):433-45. PubMed ID: 26696295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced alpha-oscillations in visual cortex during anticipation of self-generated visual stimulation.
    Stenner MP; Bauer M; Haggard P; Heinze HJ; Dolan R
    J Cogn Neurosci; 2014 Nov; 26(11):2540-51. PubMed ID: 24800633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.