These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21372851)

  • 1. Closing the circle on ribonucleotide reductases.
    Logan DT
    Nat Struct Mol Biol; 2011 Mar; 18(3):251-3. PubMed ID: 21372851
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization.
    Fairman JW; Wijerathna SR; Ahmad MF; Xu H; Nakano R; Jha S; Prendergast J; Welin RM; Flodin S; Roos A; Nordlund P; Li Z; Walz T; Dealwis CG
    Nat Struct Mol Biol; 2011 Mar; 18(3):316-22. PubMed ID: 21336276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement by effectors and substrate nucleotides of R1-R2 interactions in Escherichia coli class Ia ribonucleotide reductase.
    Kasrayan A; Birgander PL; Pappalardo L; Regnström K; Westman M; Slaby A; Gordon E; Sjöberg BM
    J Biol Chem; 2004 Jul; 279(30):31050-7. PubMed ID: 15145955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel ATP-cone-driven allosteric regulation of ribonucleotide reductase via the radical-generating subunit.
    Rozman Grinberg I; Lundin D; Hasan M; Crona M; Jonna VR; Loderer C; Sahlin M; Markova N; Borovok I; Berggren G; Hofer A; Logan DT; Sjöberg BM
    Elife; 2018 Feb; 7():. PubMed ID: 29388911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover.
    Loderer C; Jonna VR; Crona M; Rozman Grinberg I; Sahlin M; Hofer A; Lundin D; Sjöberg BM
    J Biol Chem; 2017 Nov; 292(46):19044-19054. PubMed ID: 28972190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribonucleotide reductases: the evolution of allosteric regulation.
    Reichard P
    Arch Biochem Biophys; 2002 Jan; 397(2):149-55. PubMed ID: 11795865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effector regulation in a monomeric enzyme.
    Ludwig ML; Matthews RG
    Nat Struct Biol; 2002 Apr; 9(4):236-8. PubMed ID: 11914727
    [No Abstract]   [Full Text] [Related]  

  • 8. The ATP-cone: an evolutionarily mobile, ATP-binding regulatory domain.
    Aravind L; Wolf YI; Koonin EV
    J Mol Microbiol Biotechnol; 2000 Apr; 2(2):191-4. PubMed ID: 10939243
    [No Abstract]   [Full Text] [Related]  

  • 9. Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones.
    Johansson R; Jonna VR; Kumar R; Nayeri N; Lundin D; Sjöberg BM; Hofer A; Logan DT
    Structure; 2016 Jun; 24(6):906-17. PubMed ID: 27133024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the large subunit of class Ib ribonucleotide reductase from Salmonella typhimurium and its complexes with allosteric effectors.
    Uppsten M; Färnegårdh M; Jordan A; Eliasson R; Eklund H; Uhlin U
    J Mol Biol; 2003 Jun; 330(1):87-97. PubMed ID: 12818204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basis of dATP inhibition of RNRs.
    Greene BL; Nocera DG; Stubbe J
    J Biol Chem; 2018 Jun; 293(26):10413-10414. PubMed ID: 29959279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribonucleotide reductases: substrate specificity by allostery.
    Reichard P
    Biochem Biophys Res Commun; 2010 May; 396(1):19-23. PubMed ID: 20494104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli.
    Zimanyi CM; Chen PY; Kang G; Funk MA; Drennan CL
    Elife; 2016 Jan; 5():e07141. PubMed ID: 26754917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA building blocks: keeping control of manufacture.
    Hofer A; Crona M; Logan DT; Sjöberg BM
    Crit Rev Biochem Mol Biol; 2012; 47(1):50-63. PubMed ID: 22050358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effector-Binding-Directed Dimerization and Dynamic Communication between Allosteric Sites of Ribonucleotide Reductase.
    Pham B; Lindsay RJ; Shen T
    Biochemistry; 2019 Feb; 58(6):697-705. PubMed ID: 30571104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese?
    Stubbe J; Cotruvo JA
    Curr Opin Chem Biol; 2011 Apr; 15(2):284-90. PubMed ID: 21216656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic investigations of ribonucleotide reductase.
    Nordlund P; Aberg A; Uhlin U; Eklund H
    Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):735-8. PubMed ID: 8224500
    [No Abstract]   [Full Text] [Related]  

  • 18. A comprehensive model for the allosteric regulation of Class Ia ribonucleotide reductases.
    Cooperman BS; Kashlan OB
    Adv Enzyme Regul; 2003; 43():167-82. PubMed ID: 12791390
    [No Abstract]   [Full Text] [Related]  

  • 19. Structural basis for adenosylcobalamin activation in AdoCbl-dependent ribonucleotide reductases.
    Larsson KM; Logan DT; Nordlund P
    ACS Chem Biol; 2010 Oct; 5(10):933-42. PubMed ID: 20672854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergent allostery in ribonucleotide reductase.
    Thomas WC; Brooks FP; Burnim AA; Bacik JP; Stubbe J; Kaelber JT; Chen JZ; Ando N
    Nat Commun; 2019 Jun; 10(1):2653. PubMed ID: 31201319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.