These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21373195)

  • 1. Mining significant substructure pairs for interpreting polypharmacology in drug-target network.
    Takigawa I; Tsuda K; Mamitsuka H
    PLoS One; 2011 Feb; 6(2):e16999. PubMed ID: 21373195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in silico model for interpreting polypharmacology in drug-target networks.
    Takigawa I; Tsuda K; Mamitsuka H
    Methods Mol Biol; 2013; 993():67-80. PubMed ID: 23568464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing Promiscuity at the Level of Active Compounds and Targets.
    Bajorath J
    Mol Inform; 2016 Dec; 35(11-12):583-587. PubMed ID: 27870240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database.
    Barneh F; Jafari M; Mirzaie M
    Brief Bioinform; 2016 Nov; 17(6):1070-1080. PubMed ID: 26490381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Human Kinome Targeted by FDA Approved Multi-Target Drugs and Combination Products: A Comparative Study from the Drug-Target Interaction Network Perspective.
    Li YH; Wang PP; Li XX; Yu CY; Yang H; Zhou J; Xue WW; Tan J; Zhu F
    PLoS One; 2016; 11(11):e0165737. PubMed ID: 27828998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Oncology Drug Repositioning and Polypharmacology.
    Cheng F
    Methods Mol Biol; 2019; 1878():243-261. PubMed ID: 30378081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of the mechanism of traditional Chinese medicine by AI approach using unsupervised machine learning for cellular functional similarity of compounds in heterogeneous networks, XiaoErFuPi granules as an example.
    Guo F; Tang X; Zhang W; Wei J; Tang S; Wu H; Yang H
    Pharmacol Res; 2020 Oct; 160():105077. PubMed ID: 32687952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Dec; 50(12):2112-8. PubMed ID: 21070069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polypharmacology: challenges and opportunities in drug discovery.
    Anighoro A; Bajorath J; Rastelli G
    J Med Chem; 2014 Oct; 57(19):7874-87. PubMed ID: 24946140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medicinal Polypharmacology in the Clinic - Translating the Polypharmacolome into Therapeutic Benefit.
    Rafehi M; Möller M; Ismail Al-Khalil W; Stefan SM
    Pharm Res; 2024 Mar; 41(3):411-417. PubMed ID: 38366233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of orthologous target pairs with shared active compounds and comparison of organism-specific activity patterns.
    Dimova D; Stumpfe D; Bajorath J
    Chem Biol Drug Des; 2015 Nov; 86(5):1105-14. PubMed ID: 25931211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PATHOME-Drug: a subpathway-based polypharmacology drug-repositioning method.
    Nam S; Lee S; Park S; Lee J; Park A; Kim YH; Park T
    Bioinformatics; 2022 Jan; 38(2):444-452. PubMed ID: 34515762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug repositioning through incomplete bi-cliques in an integrated drug-target-disease network.
    Daminelli S; Haupt VJ; Reimann M; Schroeder M
    Integr Biol (Camb); 2012 Jul; 4(7):778-88. PubMed ID: 22538435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polypharmacology: in silico methods of ligand design and development.
    McKie SA
    Future Med Chem; 2016 Apr; 8(5):579-602. PubMed ID: 27105127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypharmacology: drug discovery for the future.
    Reddy AS; Zhang S
    Expert Rev Clin Pharmacol; 2013 Jan; 6(1):41-7. PubMed ID: 23272792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a tripartite network for the prediction of drug targets.
    Kunimoto R; Bajorath J
    J Comput Aided Mol Des; 2018 Feb; 32(2):321-330. PubMed ID: 29340865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational polypharmacology: a new paradigm for drug discovery.
    Chaudhari R; Tan Z; Huang B; Zhang S
    Expert Opin Drug Discov; 2017 Mar; 12(3):279-291. PubMed ID: 28067061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Impact: The Role of Promiscuous Binding Sites in Polypharmacology.
    Cerisier N; Petitjean M; Regad L; Bayard Q; Réau M; Badel A; Camproux AC
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31295958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global optimization-based inference of chemogenomic features from drug-target interactions.
    Zu S; Chen T; Li S
    Bioinformatics; 2015 Aug; 31(15):2523-9. PubMed ID: 25819672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple mathematical approach to the analysis of polypharmacology and polyspecificity data.
    Maggiora G; Gokhale V
    F1000Res; 2017; 6():. PubMed ID: 28690829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.