BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21373201)

  • 21. Progesterone Receptor Expression in the Benign Prostatic Hyperplasia and Prostate Cancer Tissues, Relation with Transcription, Growth Factors, Hormone Reception and Components of the AKT/mTOR Signaling Pathway.
    Spirina LV; Kovaleva IV; Usynin EA; Goorbunov AK; Kondakova IV
    Asian Pac J Cancer Prev; 2020 Feb; 21(2):423-429. PubMed ID: 32102520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine mapping and functional analysis of a common variant in MSMB on chromosome 10q11.2 associated with prostate cancer susceptibility.
    Lou H; Yeager M; Li H; Bosquet JG; Hayes RB; Orr N; Yu K; Hutchinson A; Jacobs KB; Kraft P; Wacholder S; Chatterjee N; Feigelson HS; Thun MJ; Diver WR; Albanes D; Virtamo J; Weinstein S; Ma J; Gaziano JM; Stampfer M; Schumacher FR; Giovannucci E; Cancel-Tassin G; Cussenot O; Valeri A; Andriole GL; Crawford ED; Anderson SK; Tucker M; Hoover RN; Fraumeni JF; Thomas G; Hunter DJ; Dean M; Chanock SJ
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7933-8. PubMed ID: 19383797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of mammalian target of rapamycin signaling pathway markers in minute adenocarcinoma of the prostate.
    Faraj SF; Albadine R; Chaux A; Gonzalez-Roibon N; Hicks J; Humphreys E; Partin A; Netto GJ
    Urology; 2013 Nov; 82(5):1083-9. PubMed ID: 24035134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perspectives on mTOR inhibitors for castration-refractory prostate cancer.
    Burgio SL; Fabbri F; Seymour IJ; Zoli W; Amadori D; De Giorgi U
    Curr Cancer Drug Targets; 2012 Oct; 12(8):940-9. PubMed ID: 22831278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene Expression Studies to Identify Significant Genes in AR, MTOR, MAPK Pathways and their Overlapping Regulatory Role in Prostate Cancer.
    Asati N; Mishra A; Shukla A; Singh TR
    J Integr Bioinform; 2019 May; 16(3):. PubMed ID: 31136301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mTOR transcriptionally and post-transcriptionally regulates Npm1 gene expression to contribute to enhanced proliferation in cells with Pten inactivation.
    Boudra R; Lagrafeuille R; Lours-Calet C; de Joussineau C; Loubeau-Legros G; Chaveroux C; Saru JP; Baron S; Morel L; Beaudoin C
    Cell Cycle; 2016 May; 15(10):1352-62. PubMed ID: 27050906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remarkable inhibition of mTOR signaling by the combination of rapamycin and 1,4-phenylenebis(methylene)selenocyanate in human prostate cancer cells.
    Facompre ND; Sinha I; El-Bayoumy K; Pinto JT; Sinha R
    Int J Cancer; 2012 Nov; 131(9):2134-42. PubMed ID: 22307455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The RTK/ERK pathway is associated with prostate cancer risk on the SNP level: a pooled analysis of 41 sets of data from case-control studies.
    Chen Y; Li T; Yu X; Xu J; Li J; Luo D; Mo Z; Hu Y
    Gene; 2014 Jan; 534(2):286-97. PubMed ID: 24177231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale pathway-based analysis of bladder cancer genome-wide association data from five studies of European background.
    Menashe I; Figueroa JD; Garcia-Closas M; Chatterjee N; Malats N; Picornell A; Maeder D; Yang Q; Prokunina-Olsson L; Wang Z; Real FX; Jacobs KB; Baris D; Thun M; Albanes D; Purdue MP; Kogevinas M; Hutchinson A; Fu YP; Tang W; Burdette L; Tardón A; Serra C; Carrato A; García-Closas R; Lloreta J; Johnson A; Schwenn M; Schned A; Andriole G; Black A; Jacobs EJ; Diver RW; Gapstur SM; Weinstein SJ; Virtamo J; Caporaso NE; Landi MT; Fraumeni JF; Chanock SJ; Silverman DT; Rothman N
    PLoS One; 2012; 7(1):e29396. PubMed ID: 22238607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic variation in nucleotide excision repair pathway genes, pesticide exposure and prostate cancer risk.
    Barry KH; Koutros S; Andreotti G; Sandler DP; Burdette LA; Yeager M; Beane Freeman LE; Lubin JH; Ma X; Zheng T; Alavanja MC; Berndt SI
    Carcinogenesis; 2012 Feb; 33(2):331-7. PubMed ID: 22102698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-talk between ribosome biogenesis, translation, and mTOR in CD133+ 4/CD44+ prostate cancer stem cells.
    Binal Z; Açıkgöz E; Kızılay F; Öktem G; Altay B
    Clin Transl Oncol; 2020 Jul; 22(7):1040-1048. PubMed ID: 31630355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR pathway.
    Gao W; Guo H; Niu M; Zheng X; Zhang Y; Xue X; Bo Y; Guan X; Li Z; Guo Y; He L; Zhang Y; Li L; Cao J; Wu Y
    Mol Cancer; 2020 Nov; 19(1):166. PubMed ID: 33234130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GPCR48/LGR4 promotes tumorigenesis of prostate cancer via PI3K/Akt signaling pathway.
    Liang F; Yue J; Wang J; Zhang L; Fan R; Zhang H; Zhang Q
    Med Oncol; 2015 Mar; 32(3):49. PubMed ID: 25636507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer.
    Xu S; Ge J; Zhang Z; Zhou W
    Biomed Pharmacother; 2017 Dec; 96():634-641. PubMed ID: 29035829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer: a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation.
    Chang WL; Hsu LC; Leu WJ; Chen CS; Guh JH
    Oncotarget; 2015 Nov; 6(37):39806-20. PubMed ID: 26447757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic variations in PI3K-AKT-mTOR pathway and bladder cancer risk.
    Chen M; Cassidy A; Gu J; Delclos GL; Zhen F; Yang H; Hildebrandt MA; Lin J; Ye Y; Chamberlain RM; Dinney CP; Wu X
    Carcinogenesis; 2009 Dec; 30(12):2047-52. PubMed ID: 19875696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies.
    Mocellin S; Tropea S; Benna C; Rossi CR
    BMC Med; 2018 Feb; 16(1):20. PubMed ID: 29455641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diet and colorectal cancer: analysis of a candidate pathway using SNPS, haplotypes, and multi-gene assessment.
    Slattery ML; Lundgreen A; Herrick JS; Caan BJ; Potter JD; Wolff RK
    Nutr Cancer; 2011 Nov; 63(8):1226-34. PubMed ID: 21999454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic variants in PI3K/Akt/mTOR pathway genes contribute to gastric cancer risk.
    Ge Y; Liu H; Qiu X; Ma G; Wang H; Du M; Wang M; Zhao Q; Tao G; Chu H; Zhang Z
    Gene; 2018 Sep; 670():130-135. PubMed ID: 29802999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fine mapping of a region of chromosome 11q13 reveals multiple independent loci associated with risk of prostate cancer.
    Chung CC; Ciampa J; Yeager M; Jacobs KB; Berndt SI; Hayes RB; Gonzalez-Bosquet J; Kraft P; Wacholder S; Orr N; Yu K; Hutchinson A; Boland J; Chen Q; Feigelson HS; Thun MJ; Diver WR; Albanes D; Virtamo J; Weinstein S; Schumacher FR; Cancel-Tassin G; Cussenot O; Valeri A; Andriole GL; Crawford ED; Haiman CA; Henderson BE; Kolonel L; Le Marchand L; Siddiq A; Riboli E; Key TJ; Kaaks R; Isaacs WB; Isaacs SD; Grönberg H; Wiklund F; Xu J; Vatten LJ; Hveem K; Njolstad I; Gerhard DS; Tucker M; Hoover RN; Fraumeni JF; Hunter DJ; Thomas G; Chatterjee N; Chanock SJ
    Hum Mol Genet; 2011 Jul; 20(14):2869-78. PubMed ID: 21531787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.