BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 21373669)

  • 1. Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes.
    Jacobs CB; Vickrey TL; Venton BJ
    Analyst; 2011 Sep; 136(17):3557-65. PubMed ID: 21373669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests.
    Xiao N; Venton BJ
    Anal Chem; 2012 Sep; 84(18):7816-22. PubMed ID: 22823497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine.
    Yang C; Jacobs CB; Nguyen MD; Ganesana M; Zestos AG; Ivanov IN; Puretzky AA; Rouleau CM; Geohegan DB; Venton BJ
    Anal Chem; 2016 Jan; 88(1):645-52. PubMed ID: 26639609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.
    Zestos AG; Jacobs CB; Trikantzopoulos E; Ross AE; Venton BJ
    Anal Chem; 2014 Sep; 86(17):8568-75. PubMed ID: 25117550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes.
    Weese ME; Krevh RA; Li Y; Alvarez NT; Ross AE
    ACS Sens; 2019 Apr; 4(4):1001-1007. PubMed ID: 30920207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry.
    Mendoza A; Asrat T; Liu F; Wonnenberg P; Zestos AG
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review.
    Yang C; Denno ME; Pyakurel P; Venton BJ
    Anal Chim Acta; 2015 Aug; 887():17-37. PubMed ID: 26320782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.
    Rodríguez MC; Rubianes MD; Rivas GA
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6003-9. PubMed ID: 19198338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-fiber microelectrodes for in vivo applications.
    Huffman ML; Venton BJ
    Analyst; 2009 Jan; 134(1):18-24. PubMed ID: 19082168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine.
    Zestos AG; Yang C; Jacobs CB; Hensley D; Venton BJ
    Analyst; 2015 Nov; 140(21):7283-92. PubMed ID: 26389138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanoparticle Modified Carbon Fiber Microelectrodes for Enhanced Neurochemical Detection.
    Mohanaraj S; Wonnenberg P; Cohen B; Zhao H; Hartings MR; Zou S; Fox DM; Zestos AG
    J Vis Exp; 2019 May; (147):. PubMed ID: 31132067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical treatment in KOH improves carbon nanomaterial performance to multiple neurochemicals.
    Hanser SM; Shao Z; Zhao H; Venton BJ
    Analyst; 2024 Jan; 149(2):457-466. PubMed ID: 38087947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of ionic liquid on the electrochemical sensing performance of graphene- and carbon nanotube-based electrodes.
    Wang CH; Wu CH; Wu JW; Lee MT; Chang JK; Ger MD; Sun CL
    Analyst; 2013 Jan; 138(2):576-82. PubMed ID: 23172364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of dopamine and ascorbic acid using carbon nanotube fiber microelectrodes.
    Viry L; Derré A; Poulin P; Kuhn A
    Phys Chem Chem Phys; 2010 Sep; 12(34):9993-5. PubMed ID: 20623074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized carbon nanotube adsorption interfaces for electron transfer studies of galactose oxidase.
    Wayu MB; Pannell MJ; Labban N; Case WS; Pollock JA; Leopold MC
    Bioelectrochemistry; 2019 Feb; 125():116-126. PubMed ID: 30449323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexing neurochemical detection with carbon fiber multielectrode arrays using fast-scan cyclic voltammetry.
    Rafi H; Zestos AG
    Anal Bioanal Chem; 2021 Nov; 413(27):6715-6726. PubMed ID: 34259877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and Dynamics of Adsorbed Dopamine on Solvated Carbon Nanotubes and in a CNT Groove.
    Jia Q; Venton BJ; DuBay KH
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors.
    Alwarappan S; Liu G; Li CZ
    Nanomedicine; 2010 Feb; 6(1):52-7. PubMed ID: 19616125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.