These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21374082)

  • 1. Interactions between intrinsic membrane and emerging network properties determine signal processing in central vestibular neurons.
    Rössert C; Straka H
    Exp Brain Res; 2011 May; 210(3-4):437-49. PubMed ID: 21374082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vestibular signal processing by separate sets of neuronal filters.
    Beraneck M; Straka H
    J Vestib Res; 2011; 21(1):5-19. PubMed ID: 21422539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential dynamic processing of afferent signals in frog tonic and phasic second-order vestibular neurons.
    Pfanzelt S; Rössert C; Rohregger M; Glasauer S; Moore LE; Straka H
    J Neurosci; 2008 Oct; 28(41):10349-62. PubMed ID: 18842894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise.
    Rössert C; Moore LE; Straka H; Glasauer S
    J Neurosci; 2011 Jun; 31(23):8359-72. PubMed ID: 21653841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential inhibitory control of semicircular canal nerve afferent-evoked inputs in second-order vestibular neurons by glycinergic and GABAergic circuits.
    Biesdorf S; Malinvaud D; Reichenberger I; Pfanzelt S; Straka H
    J Neurophysiol; 2008 Apr; 99(4):1758-69. PubMed ID: 18256163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity.
    Straka H; Vibert N; Vidal PP; Moore LE; Dutia MB
    Prog Neurobiol; 2005 Aug; 76(6):349-92. PubMed ID: 16263204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-order vestibular neurons form separate populations with different membrane and discharge properties.
    Straka H; Beraneck M; Rohregger M; Moore LE; Vidal PP; Vibert N
    J Neurophysiol; 2004 Aug; 92(2):845-61. PubMed ID: 15044516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic organization principles of the VOR: lessons from frogs.
    Straka H; Dieringer N
    Prog Neurobiol; 2004 Jul; 73(4):259-309. PubMed ID: 15261395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential intrinsic response dynamics determine synaptic signal processing in frog vestibular neurons.
    Beraneck M; Pfanzelt S; Vassias I; Rohregger M; Vibert N; Vidal PP; Moore LE; Straka H
    J Neurosci; 2007 Apr; 27(16):4283-96. PubMed ID: 17442812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vestibulo-ocular signal transformation in frequency-tuned channels.
    Straka H; Lambert FM; Pfanzelt S; Beraneck M
    Ann N Y Acad Sci; 2009 May; 1164():37-44. PubMed ID: 19645878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic membrane properties of central vestibular neurons in rodents.
    Eugène D; Idoux E; Beraneck M; Moore LE; Vidal PP
    Exp Brain Res; 2011 May; 210(3-4):423-36. PubMed ID: 21331527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional organization of vestibular commissural connections in frog.
    Malinvaud D; Vassias I; Reichenberger I; Rössert C; Straka H
    J Neurosci; 2010 Mar; 30(9):3310-25. PubMed ID: 20203191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galvanic Vestibular Stimulation: Cellular Substrates and Response Patterns of Neurons in the Vestibulo-Ocular Network.
    Gensberger KD; Kaufmann AK; Dietrich H; Branoner F; Banchi R; Chagnaud BP; Straka H
    J Neurosci; 2016 Aug; 36(35):9097-110. PubMed ID: 27581452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Organization of Vestibulo-Ocular Responses in Abducens Motoneurons.
    Dietrich H; Glasauer S; Straka H
    J Neurosci; 2017 Apr; 37(15):4032-4045. PubMed ID: 28292832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of intrinsic and synaptic properties to reveal the cellular and network contribution for vestibular signal processing.
    Rössert C; Pfanzelt S; Straka H; Glasauer S
    Ann N Y Acad Sci; 2009 May; 1164():451-4. PubMed ID: 19645946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons.
    Straka H; Holler S; Goto F
    J Neurophysiol; 2002 Nov; 88(5):2287-301. PubMed ID: 12424270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of spontaneous activity and response properties of primary lagenar neurons in the chick.
    Galicia S; Cortes C; Galindo F; Flores A
    Cell Mol Neurobiol; 2010 Apr; 30(3):327-31. PubMed ID: 20140493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specializations for Fast Signaling in the Amniote Vestibular Inner Ear.
    Eatock RA
    Integr Comp Biol; 2018 Aug; 58(2):341-350. PubMed ID: 29920589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-independent synaptic transmission supports a linear vestibular behavior.
    Bagnall MW; McElvain LE; Faulstich M; du Lac S
    Neuron; 2008 Oct; 60(2):343-52. PubMed ID: 18957225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential sensorimotor processing of vestibulo-ocular signals during rotation and translation.
    Angelaki DE; Green AM; Dickman JD
    J Neurosci; 2001 Jun; 21(11):3968-85. PubMed ID: 11356885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.