These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2137410)

  • 61. Characterization and purification of the membrane-bound ATPase of the archaebacterium Methanosarcina barkeri.
    Inatomi K
    J Bacteriol; 1986 Sep; 167(3):837-41. PubMed ID: 2943728
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Proteins of bacterial membranes. Purification of soluble ATPase from Acholeplasma laidlawii].
    Kapitanov AB; Noskova VP; Ivanova VF
    Biokhimiia; 1980 Jan; 45(1):124-9. PubMed ID: 6452174
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Subunit composition of the H+-ATPase complex from anaerobic bacterium Lactobacillus casei.
    Mileykovskaya EI; Abuladze AN; Ostrovsky DN
    Eur J Biochem; 1987 Nov; 168(3):703-8. PubMed ID: 2959478
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Vacuolar-type ATPase in a hyperthermophilic archaeum, Thermococcus sp. KI.
    Iida T; Hoaki T; Kamino K; Inatomi K; Kamagata Y; Maruyama T
    Biochem Biophys Res Commun; 1996 Dec; 229(2):559-64. PubMed ID: 8954937
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Membrane reconstitution in chl-r mutants of Escherichia coli K 12. VII. Purification of the soluble ATPase of supernatant extracts and kinetics of incorporation into reconstituted particles.
    Giordano G; Riviere C; Azoulay E
    Biochim Biophys Acta; 1975 May; 389(2):203-18. PubMed ID: 124590
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A plasma-membrane associated ATPase from the acidophilic bacterium Acidiphilium cryptum.
    Bhattacharyya S; Banerjee PC; Das PK
    Biochem Cell Biol; 1990 Oct; 68(10):1222-5. PubMed ID: 2148483
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Further comments on the logic of the application of uncoupler- inhibitor titrations for the elucidation of the mechanisms of energy coupling.
    Pietrobon D; Caplan SR
    FEBS Lett; 1985 Nov; 192(1):119-22. PubMed ID: 2996936
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanistic investigation on the temperature dependence and inhibition of corn root plasma membrane ATPase.
    Tu SI; Sliwinski BJ
    Arch Biochem Biophys; 1985 Sep; 241(2):348-55. PubMed ID: 2931048
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium.
    Friedrich M; Schink B
    Arch Microbiol; 1995 Apr; 163(4):268-75. PubMed ID: 7763134
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Gradation of the magnitude of the electrochemical proton gradient in Mycoplasma cells.
    Benyoucef M; Rigaud JL; Leblanc G
    Eur J Biochem; 1981 Jan; 113(3):499-506. PubMed ID: 6260482
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The isolation of plasma membrane and characterisation of the plasma membrane ATPase from the yeast Candida albicans.
    Hubbard MJ; Surarit R; Sullivan PA; Shepherd MG
    Eur J Biochem; 1986 Jan; 154(2):375-81. PubMed ID: 2935395
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Membrane-reversible H+-ATPase from Micrococcus lysodeikticus.
    Mileykovskaya EI; Tikhonova GV; Kondrashin AA; Kozlov IA
    Eur J Biochem; 1976 Mar; 62(3):613-7. PubMed ID: 4306
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Energetics of methanogenesis studied in vesicular systems.
    Blaut M; Müller V; Gottschalk G
    J Bioenerg Biomembr; 1992 Dec; 24(6):529-46. PubMed ID: 1459985
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vivo 31P- and 13C-NMR studies of ATP synthesis and methane formation by Methanosarcina barkeri.
    Santos H; Fareleira P; Toci R; LeGall J; Peck HD; Xavier AV
    Eur J Biochem; 1989 Mar; 180(2):421-7. PubMed ID: 2924775
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chemiosmotic energy conservation with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii.
    Imkamp F; Müller V
    J Bacteriol; 2002 Apr; 184(7):1947-51. PubMed ID: 11889102
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In vivo and in vitro incorporation of endogenous nucleotides by the energy-transducing ATPase of Streptococcus faecalis.
    Zlotnick GW; Abrams A
    Arch Biochem Biophys; 1984 May; 230(2):517-24. PubMed ID: 6231890
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of starvation on cytoplasmic pH, proton motive force, and viability of an acidophilic bacterium, Thiobacillus acidophilus.
    Zychlinsky E; Matin A
    J Bacteriol; 1983 Jan; 153(1):371-4. PubMed ID: 6294053
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of an ATPase on the inside of rat-liver nuclear envelopes by affinity labeling.
    Kondor-Koch C; Riedel N; Valentin R; Fasold H; Fischer H
    Eur J Biochem; 1982 Oct; 127(2):285-9. PubMed ID: 6183117
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Action of Buytricin 7423 on Clostridium pasteurianum: changes in intracellular adenosine triphosphate concentration.
    Clarke DJ; Morris JG
    Biochem Soc Trans; 1975; 3(3):389-91. PubMed ID: 124278
    [No Abstract]   [Full Text] [Related]  

  • 80. Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri.
    Kulkarni G; Kridelbaugh DM; Guss AM; Metcalf WW
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15915-20. PubMed ID: 19805232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.