These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2137454)

  • 1. The enhanced ATPase activity of glutathione-substituted actin provides a quantitative approach to filament stabilization.
    Drewes G; Faulstich H
    J Biol Chem; 1990 Feb; 265(6):3017-21. PubMed ID: 2137454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathionyl(cysteine-374) actin forms filaments of low mechanical stability.
    Stournaras C; Drewes G; Blackholm H; Merkler I; Faulstich H
    Biochim Biophys Acta; 1990 Jan; 1037(1):86-91. PubMed ID: 2136799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of actin-cardiac myosin subfragment 1 MgATPase rate by Ca2+ shows cooperativity intrinsic to the thin filament.
    Tobacman LS
    Biochemistry; 1987 Jan; 26(2):492-7. PubMed ID: 2950924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between actin, myosin, and an actin-binding protein from rabbit alveolar macrophages. Alveolar macrophage myosin Mg-2+-adenosine triphosphatase requires a cofactor for activation by actin.
    Stossel TP; Hartwig JH
    J Biol Chem; 1975 Jul; 250(14):5706-12. PubMed ID: 124735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the mechanism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phosphate BeF-3 and A1F-4.
    Combeau C; Carlier MF
    J Biol Chem; 1988 Nov; 263(33):17429-36. PubMed ID: 3182855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking.
    Janmey PA; Chaponnier C; Lind SE; Zaner KS; Stossel TP; Yin HL
    Biochemistry; 1985 Jul; 24(14):3714-23. PubMed ID: 2994715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phalloidin reduces the release of inorganic phosphate during actin polymerization.
    Dancker P; Hess L
    Biochim Biophys Acta; 1990 Aug; 1035(2):197-200. PubMed ID: 2393669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of muscle tropomyosin on the kinetics of polymerization of muscle actin.
    Lal AA; Korn ED
    Biochemistry; 1986 Mar; 25(5):1154-8. PubMed ID: 2938625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of actin with phalloidin: polymerization and stabilization of F-actin.
    Dancker P; Löw I; Hasselbach W; Wieland T
    Biochim Biophys Acta; 1975 Aug; 400(2):407-14. PubMed ID: 126084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual effect of Ca2+ on ultrasonic ATPase activity and polymerization of muscle actin.
    Dancker P; Löw I
    Biochim Biophys Acta; 1977 Sep; 484(1):169-76. PubMed ID: 142517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of actin filament cross-linking and filament length on actin-myosin interaction.
    Coleman TR; Mooseker MS
    J Cell Biol; 1985 Nov; 101(5 Pt 1):1850-7. PubMed ID: 2932451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The critical concentration of actin in the presence of ATP increases with the number concentration of filaments and approaches the critical concentration of actin.ADP.
    Pantaloni D; Carlier MF; Coué M; Lal AA; Brenner SL; Korn ED
    J Biol Chem; 1984 May; 259(10):6274-83. PubMed ID: 6539330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization.
    Brenner SL; Korn ED
    J Biol Chem; 1980 Feb; 255(3):841-4. PubMed ID: 6444302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of phosphorylation of myosin light chains on the interaction of myosin minifilaments with F-actin].
    Levitskiĭ DI; Shuvalova LA; Kalmykov PV; Poglazov BF
    Biokhimiia; 1987 May; 52(5):813-24. PubMed ID: 2954590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of actin filaments by ATP and inorganic phosphate.
    Dancker P; Fischer S
    Z Naturforsch C J Biosci; 1989; 44(7-8):698-704. PubMed ID: 2775410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of actomyosin adenosine triphosphatase. Evidence that adenosine 5'-triphosphate hydrolysis can occur without dissociation of the actomyosin complex.
    Stein LA; Schwarz RP; Chock PB; Eisenberg E
    Biochemistry; 1979 Sep; 18(18):3895-909. PubMed ID: 158378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A correlative analysis of actin filament assembly, structure, and dynamics.
    Steinmetz MO; Goldie KN; Aebi U
    J Cell Biol; 1997 Aug; 138(3):559-74. PubMed ID: 9245786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro motility of skeletal muscle myosin and its proteolytic fragments.
    Takiguchi K; Hayashi H; Kurimoto E; Higashi-Fujime S
    J Biochem; 1990 May; 107(5):671-9. PubMed ID: 2144521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic properties of actin. Structural changes induced by beryllium fluoride.
    Muhlrad A; Cheung P; Phan BC; Miller C; Reisler E
    J Biol Chem; 1994 Apr; 269(16):11852-8. PubMed ID: 8163484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.