These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21374562)

  • 1. Polyurethanes as supports for human retinal pigment epithelium cell growth.
    da Silva GR; Junior Ada S; Saliba JB; Berdugo M; Goldenberg BT; Naud MC; Ayres E; Oréfice RL; Cohen FB
    Int J Artif Organs; 2011 Feb; 34(2):198-209. PubMed ID: 21374562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth.
    Da Silva GR; Da Silva-Cunha A; Vieira LC; Silva LM; Ayres E; Oréfice RL; Fialho SL; Saliba JB; Behar-Cohen F
    J Mater Sci Mater Med; 2013 May; 24(5):1309-17. PubMed ID: 23430334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of small intestinal submucosa content on the adhesion and proliferation of retinal pigment epithelial cells on SIS-PLGA films.
    Lee GY; Kang SJ; Lee SJ; Song JE; Joo CK; Lee D; Khang G
    J Tissue Eng Regen Med; 2017 Jan; 11(1):99-108. PubMed ID: 24888975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay.
    Asefnejad A; Khorasani MT; Behnamghader A; Farsadzadeh B; Bonakdar S
    Int J Nanomedicine; 2011; 6():2375-84. PubMed ID: 22072874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography.
    Liu Z; Yu N; Holz FG; Yang F; Stanzel BV
    Biomaterials; 2014 Mar; 35(9):2837-50. PubMed ID: 24439407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Synthesis, characterization and electrospinning of biodegradable polyurethanes based on poly(epsilon-caprolactone) and L-lysine diisocynate].
    Han J; Ye L; Zhang A; Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1274-9. PubMed ID: 21374978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.
    Li G; Li D; Niu Y; He T; Chen KC; Xu K
    J Biomed Mater Res A; 2014 Mar; 102(3):685-97. PubMed ID: 23554296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery.
    Zhou L; Liang D; He X; Li J; Tan H; Li J; Fu Q; Gu Q
    Biomaterials; 2012 Mar; 33(9):2734-45. PubMed ID: 22236829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders.
    Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO
    Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration.
    Niu Y; Chen KC; He T; Yu W; Huang S; Xu K
    Biomaterials; 2014 May; 35(14):4266-77. PubMed ID: 24582378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate.
    Alishiri M; Shojaei A; Abdekhodaie MJ; Yeganeh H
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():763-73. PubMed ID: 25063178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization.
    Valério A; Conti DS; Araújo PHH; Sayer C; Rocha SRPD
    Colloids Surf B Biointerfaces; 2015 Nov; 135():35-41. PubMed ID: 26241914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous poly(ε-caprolactone) scaffolds for retinal pigment epithelium transplantation.
    McHugh KJ; Tao SL; Saint-Geniez M
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1754-62. PubMed ID: 24550370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application.
    Baheiraei N; Yeganeh H; Ai J; Gharibi R; Azami M; Faghihi F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():24-37. PubMed ID: 25280676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells.
    Sorkio A; Porter PJ; Juuti-Uusitalo K; Meenan BJ; Skottman H; Burke GA
    Tissue Eng Part A; 2015 Sep; 21(17-18):2301-14. PubMed ID: 25946229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications.
    Hao H; Shao J; Deng Y; He S; Luo F; Wu Y; Li J; Tan H; Li J; Fu Q
    Biomater Sci; 2016 Oct; 4(11):1682-1690. PubMed ID: 27709130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.