These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21374717)

  • 1. On the follow-up of genome-wide association studies: an overall test for the most promising SNPs.
    Lipman PJ; Cho MH; Bakke P; Gulsvik A; Kong X; Lomas DA; Anderson W; Silverman EK; Lange C
    Genet Epidemiol; 2011 Jul; 35(5):303-9. PubMed ID: 21374717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method combining a random forest-based technique with the modeling of linkage disequilibrium through latent variables, to run multilocus genome-wide association studies.
    Sinoquet C
    BMC Bioinformatics; 2018 Mar; 19(1):106. PubMed ID: 29587628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS.
    Shi G; Boerwinkle E; Morrison AC; Gu CC; Chakravarti A; Rao DC
    Genet Epidemiol; 2011 Feb; 35(2):111-8. PubMed ID: 21254218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing power of genome-wide association studies by collecting additional single-nucleotide polymorphisms.
    Kostem E; Lozano JA; Eskin E
    Genetics; 2011 Jun; 188(2):449-60. PubMed ID: 21467568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway-based analysis for genome-wide association studies using supervised principal components.
    Chen X; Wang L; Hu B; Guo M; Barnard J; Zhu X
    Genet Epidemiol; 2010 Nov; 34(7):716-24. PubMed ID: 20842628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL.
    Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF
    Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach.
    Carlsen M; Fu G; Bushman S; Corcoran C
    Genetics; 2016 Feb; 202(2):411-26. PubMed ID: 26661113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel rank-based approaches for discovery and replication in genome-wide association studies.
    Kuo CL; Zaykin DV
    Genetics; 2011 Sep; 189(1):329-40. PubMed ID: 21705758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linkage-disequilibrium-based binning affects the interpretation of GWASs.
    Christoforou A; Dondrup M; Mattingsdal M; Mattheisen M; Giddaluru S; Nöthen MM; Rietschel M; Cichon S; Djurovic S; Andreassen OA; Jonassen I; Steen VM; Puntervoll P; Le Hellard S
    Am J Hum Genet; 2012 Apr; 90(4):727-33. PubMed ID: 22444669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extent of linkage disequilibrium and computational challenges of single nucleotide polymorphisms in genome-wide association studies.
    Huang YT; Chang CJ; Chao KM
    Curr Drug Metab; 2011 Jun; 12(5):498-506. PubMed ID: 21453276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNP eQTL status and eQTL density in the adjacent region of the SNP are associated with its statistical significance in GWA studies.
    Gorlov I; Xiao X; Mayes M; Gorlova O; Amos C
    BMC Genet; 2019 Nov; 20(1):85. PubMed ID: 31718536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting genetic association through shortest paths in a bidirected graph.
    Ueki M; Kawasaki Y; Tamiya G;
    Genet Epidemiol; 2017 Sep; 41(6):481-497. PubMed ID: 28626864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust test for two-stage design in genome-wide association studies.
    Kwak M; Joo J; Zheng G
    Biometrics; 2009 Dec; 65(4):1288-95. PubMed ID: 19432785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the signal-to-noise ratio in genome-wide association studies.
    Martin LJ; Gao G; Kang G; Fang Y; Woo JG
    Genet Epidemiol; 2009; 33 Suppl 1(Suppl 1):S29-32. PubMed ID: 19924719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-wide association study of pulmonary function measures in the Framingham Heart Study.
    Wilk JB; Chen TH; Gottlieb DJ; Walter RE; Nagle MW; Brandler BJ; Myers RH; Borecki IB; Silverman EK; Weiss ST; O'Connor GT
    PLoS Genet; 2009 Mar; 5(3):e1000429. PubMed ID: 19300500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power consequences of linkage disequilibrium variation between populations.
    Teo YY; Small KS; Fry AE; Wu Y; Kwiatkowski DP; Clark TG
    Genet Epidemiol; 2009 Feb; 33(2):128-35. PubMed ID: 18814308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative modeling of multiple genomic data from different types of genetic association studies.
    Huang YT
    Biostatistics; 2014 Oct; 15(4):587-602. PubMed ID: 24705142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of random forest when SNPs are in linkage disequilibrium.
    Meng YA; Yu Y; Cupples LA; Farrer LA; Lunetta KL
    BMC Bioinformatics; 2009 Mar; 10():78. PubMed ID: 19265542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probability of detecting disease-associated single nucleotide polymorphisms in case-control genome-wide association studies.
    Gail MH; Pfeiffer RM; Wheeler W; Pee D
    Biostatistics; 2008 Apr; 9(2):201-15. PubMed ID: 17873152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.