BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21374721)

  • 1. Functionally important positions can comprise the majority of a protein's architecture.
    Tungtur S; Parente DJ; Swint-Kruse L
    Proteins; 2011 May; 79(5):1589-608. PubMed ID: 21374721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses.
    Tungtur S; Meinhardt S; Swint-Kruse L
    J Mol Biol; 2010 Jan; 395(4):785-802. PubMed ID: 19818797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental identification of specificity determinants in the domain linker of a LacI/GalR protein: bioinformatics-based predictions generate true positives and false negatives.
    Meinhardt S; Swint-Kruse L
    Proteins; 2008 Dec; 73(4):941-57. PubMed ID: 18536016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple co-evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins.
    Parente DJ; Swint-Kruse L
    PLoS One; 2013; 8(12):e84398. PubMed ID: 24391951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation.
    Swint-Kruse L; Martin TA; Page BM; Wu T; Gerhart PM; Dougherty LL; Tang Q; Parente DJ; Mosier BR; Bantis LE; Fenton AW
    Protein Sci; 2021 Sep; 30(9):1833-1853. PubMed ID: 34076313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores.
    Parente DJ; Ray JC; Swint-Kruse L
    Proteins; 2015 Dec; 83(12):2293-306. PubMed ID: 26503808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheostats and toggle switches for modulating protein function.
    Meinhardt S; Manley MW; Parente DJ; Swint-Kruse L
    PLoS One; 2013; 8(12):e83502. PubMed ID: 24386217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression.
    Meinhardt S; Manley MW; Becker NA; Hessman JA; Maher LJ; Swint-Kruse L
    Nucleic Acids Res; 2012 Nov; 40(21):11139-54. PubMed ID: 22965134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlloRep: A Repository of Sequence, Structural and Mutagenesis Data for the LacI/GalR Transcription Regulators.
    Sousa FL; Parente DJ; Shis DL; Hessman JA; Chazelle A; Bennett MR; Teichmann SA; Swint-Kruse L
    J Mol Biol; 2016 Feb; 428(4):671-678. PubMed ID: 26410588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins.
    Fukami-Kobayashi K; Tateno Y; Nishikawa K
    Mol Biol Evol; 2003 Feb; 20(2):267-77. PubMed ID: 12598694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of quaternary structure: twenty-two ways to form a LacI dimer.
    Swint-Kruse L; Elam CR; Lin JW; Wycuff DR; Shive Matthews K
    Protein Sci; 2001 Feb; 10(2):262-76. PubMed ID: 11266612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence.
    Tungtur S; Egan SM; Swint-Kruse L
    Proteins; 2007 Jul; 68(1):375-88. PubMed ID: 17436321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence.
    Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH
    J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.
    Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S
    PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of the Escherichia coli transcription activator and regulator of diauxie, XylR: an AraC DNA-binding family member with a LacI/GalR ligand-binding domain.
    Ni L; Tonthat NK; Chinnam N; Schumacher MA
    Nucleic Acids Res; 2013 Feb; 41(3):1998-2008. PubMed ID: 23241389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR.
    Swint-Kruse L; Larson C; Pettitt BM; Matthews KS
    Protein Sci; 2002 Apr; 11(4):778-94. PubMed ID: 11910022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic, structural and functional analyses of the LacI-GalR family of bacterial transcription factors.
    Nguyen CC; Saier MH
    FEBS Lett; 1995 Dec; 377(2):98-102. PubMed ID: 8543068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering alternate cooperative-communications in the lactose repressor protein scaffold.
    Meyer S; Ramot R; Kishore Inampudi K; Luo B; Lin C; Amere S; Wilson CJ
    Protein Eng Des Sel; 2013 Jun; 26(6):433-43. PubMed ID: 23587523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allostery in the LacI/GalR family: variations on a theme.
    Swint-Kruse L; Matthews KS
    Curr Opin Microbiol; 2009 Apr; 12(2):129-37. PubMed ID: 19269243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility and Disorder in Gene Regulation: LacI/GalR and Hox Proteins.
    Bondos SE; Swint-Kruse L; Matthews KS
    J Biol Chem; 2015 Oct; 290(41):24669-77. PubMed ID: 26342073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.