These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 21375237)

  • 1. Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism.
    Ma C; Wang D; Xue W; Dou B; Wang H; Hao Z
    Environ Sci Technol; 2011 Apr; 45(8):3628-34. PubMed ID: 21375237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of methanol oxidation over Au/catalysts using operando IR spectroscopy: determination of the active sites, intermediate/spectator species, and reaction mechanism.
    Rousseau S; Marie O; Bazin P; Daturi M; Verdier S; Harlé V
    J Am Chem Soc; 2010 Aug; 132(31):10832-41. PubMed ID: 20681717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene.
    Ma CY; Mu Z; Li JJ; Jin YG; Cheng J; Lu GQ; Hao ZP; Qiao SZ
    J Am Chem Soc; 2010 Mar; 132(8):2608-13. PubMed ID: 20141130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indoor formaldehyde removal by thermal catalyst: kinetic characteristics, key parameters, and temperature influence.
    Xu Q; Zhang Y; Mo J; Li X
    Environ Sci Technol; 2011 Jul; 45(13):5754-60. PubMed ID: 21667968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt-modified mesoporous MgO, ZrO2, and CeO2 oxides as catalysts for methanol decomposition.
    Tsoncheva T; Ivanova L; Minchev C; Fröba M
    J Colloid Interface Sci; 2009 May; 333(1):277-84. PubMed ID: 19215934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route.
    Solsona B; Aylón E; Murillo R; Mastral AM; Monzonís A; Agouram S; Davies TE; Taylor SH; Garcia T
    J Hazard Mater; 2011 Mar; 187(1-3):544-52. PubMed ID: 21315508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formaldehyde: catalytic oxidation as a promising soft way of elimination.
    Quiroz Torres J; Royer S; Bellat JP; Giraudon JM; Lamonier JF
    ChemSusChem; 2013 Apr; 6(4):578-92. PubMed ID: 23456881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts.
    Ma C; Mu Z; He C; Li P; Li J; Hao Z
    J Environ Sci (China); 2011; 23(12):2078-86. PubMed ID: 22432341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature.
    Zhao DZ; Shi C; Li XS; Zhu AM; Jang BW
    J Hazard Mater; 2012 Nov; 239-240():362-9. PubMed ID: 23021101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of formaldehyde over Mn(x)Ce(1)-(x)O(2) catalysts: thermal catalytic oxidation versus ozone catalytic oxidation.
    Li JW; Pan KL; Yu SJ; Yan SY; Chang MB
    J Environ Sci (China); 2014 Dec; 26(12):2546-53. PubMed ID: 25499503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method.
    An N; Yu Q; Liu G; Li S; Jia M; Zhang W
    J Hazard Mater; 2011 Feb; 186(2-3):1392-7. PubMed ID: 21211900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of formaldehyde by nanosized gold on well-defined CeO₂ nanorods at room temperature.
    Xu Q; Lei W; Li X; Qi X; Yu J; Liu G; Wang J; Zhang P
    Environ Sci Technol; 2014 Aug; 48(16):9702-8. PubMed ID: 25019508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde.
    Nie L; Yu J; Li X; Cheng B; Liu G; Jaroniec M
    Environ Sci Technol; 2013 Mar; 47(6):2777-83. PubMed ID: 23438899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.
    Wang AQ; Chang CM; Mou CY
    J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO bond cleavage on supported nano-gold during low temperature oxidation.
    Carley AF; Morgan DJ; Song N; Roberts MW; Taylor SH; Bartley JK; Willock DJ; Howard KL; Hutchings GJ
    Phys Chem Chem Phys; 2011 Feb; 13(7):2528-38. PubMed ID: 21152570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3.
    Chen L; Li J; Ge M
    Environ Sci Technol; 2010 Dec; 44(24):9590-6. PubMed ID: 21087047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism.
    Burch R
    Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support Morphology-Dependent Catalytic Activity of Pd/CeO₂ for Formaldehyde Oxidation.
    Tan H; Wang J; Yu S; Zhou K
    Environ Sci Technol; 2015 Jul; 49(14):8675-82. PubMed ID: 26120873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of aniline by catalytic wet air oxidation: comparative study over CuO/CeO2 and NiO/Al2O3.
    Ersöz G; Atalay S
    J Environ Manage; 2012 Dec; 113():244-50. PubMed ID: 23041516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticles embedded within mesoporous cobalt oxide enhance electrochemical oxygen evolution.
    Lu X; Ng YH; Zhao C
    ChemSusChem; 2014 Jan; 7(1):82-6. PubMed ID: 24339340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.