These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21375256)

  • 1. Suppression of blinking and enhanced exciton emission from individual carbon nanotubes.
    Ai N; Walden-Newman W; Song Q; Kalliakos S; Strauf S
    ACS Nano; 2011 Apr; 5(4):2664-70. PubMed ID: 21375256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes.
    Walden-Newman W; Sarpkaya I; Strauf S
    Nano Lett; 2012 Apr; 12(4):1934-41. PubMed ID: 22439967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides.
    Javadi A; Maibom S; Sapienza L; Thyrrestrup H; GarcĂ­a PD; Lodahl P
    Opt Express; 2014 Dec; 22(25):30992-1001. PubMed ID: 25607048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities.
    Luo Y; Ahmadi ED; Shayan K; Ma Y; Mistry KS; Zhang C; Hone J; Blackburn JL; Strauf S
    Nat Commun; 2017 Nov; 8(1):1413. PubMed ID: 29123125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coupling of individual air-suspended carbon nanotubes to silicon microcavities.
    Terashima W; K Kato Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2024; 100(6):320-334. PubMed ID: 38866479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single germanium quantum dot embedded in photonic crystal nanocavity for light emitter on silicon chip.
    Zeng C; Ma Y; Zhang Y; Li D; Huang Z; Wang Y; Huang Q; Li J; Zhong Z; Yu J; Jiang Z; Xia J
    Opt Express; 2015 Aug; 23(17):22250-61. PubMed ID: 26368197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes.
    Sarpkaya I; Zhang Z; Walden-Newman W; Wang X; Hone J; Wong CW; Strauf S
    Nat Commun; 2013; 4():2152. PubMed ID: 23845935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas.
    Shayan K; He X; Luo Y; Rabut C; Li X; Hartmann NF; Blackburn JL; Doorn SK; Htoon H; Strauf S
    Nanoscale; 2018 Jul; 10(26):12631-12638. PubMed ID: 29943788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy of free-standing individual semiconducting single-wall carbon nanotubes.
    Paillet M; Langlois S; Sauvajol JL; Marty L; Iaia A; Naud C; Bouchiat V; Bonnot AM
    J Phys Chem B; 2006 Jan; 110(1):164-9. PubMed ID: 16471515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes.
    Georgi C; Hartmann N; Gokus T; Green AA; Hersam MC; Hartschuh A
    Chemphyschem; 2008 Jul; 9(10):1460-4. PubMed ID: 18506857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters.
    Miura R; Imamura S; Ohta R; Ishii A; Liu X; Shimada T; Iwamoto S; Arakawa Y; Kato YK
    Nat Commun; 2014 Nov; 5():5580. PubMed ID: 25420679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly directional emission from a quantum emitter embedded in a hemispherical cavity.
    Ma Y; Ballesteros G; Zajac JM; Sun J; Gerardot BD
    Opt Lett; 2015 May; 40(10):2373-6. PubMed ID: 26393743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity quantum electrodynamics with Anderson-localized modes.
    Sapienza L; Thyrrestrup H; Stobbe S; Garcia PD; Smolka S; Lodahl P
    Science; 2010 Mar; 327(5971):1352-5. PubMed ID: 20223981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.
    Bachir AI; Kolin DL; Heinze KG; Hebert B; Wiseman PW
    J Chem Phys; 2008 Jun; 128(22):225105. PubMed ID: 18554062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots.
    Tang J; Marcus RA
    J Chem Phys; 2005 Aug; 123(5):054704. PubMed ID: 16108682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limiting the Spectral Diffusion of Nano-Scale Light Emitters using the Purcell effect in a Photonic-Confined Environment.
    Lyasota A; Jarlov C; Rudra A; Dwir B; Kapon E
    Sci Rep; 2019 Feb; 9(1):1195. PubMed ID: 30718590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices.
    Gaulke M; Janissek A; Peyyety NA; Alamgir I; Riaz A; Dehm S; Li H; Lemmer U; Flavel BS; Kappes MM; Hennrich F; Wei L; Chen Y; Pyatkov F; Krupke R
    ACS Nano; 2020 Mar; 14(3):2709-2717. PubMed ID: 31920075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity.
    McCutcheon MW; Chang DE; Zhang Y; Lukin MD; Loncar M
    Opt Express; 2009 Dec; 17(25):22689-703. PubMed ID: 20052195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.