These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21375257)

  • 1. Atomistic structure of monomolecular surface layer self-assemblies: toward functionalized nanostructures.
    Horejs C; Gollner H; Pum D; Sleytr UB; Peterlik H; Jungbauer A; Tscheliessnig R
    ACS Nano; 2011 Mar; 5(3):2288-97. PubMed ID: 21375257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: from protein structure to nanodisk assemblies.
    Horejs C; Pum D; Sleytr UB; Peterlik H; Jungbauer A; Tscheliessnig R
    J Chem Phys; 2010 Nov; 133(17):175102. PubMed ID: 21054069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular basis of self-assembly of dendron-rod-coils into one-dimensional nanostructures.
    Zubarev ER; Sone ED; Stupp SI
    Chemistry; 2006 Sep; 12(28):7313-27. PubMed ID: 16892475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postassembly chemical modification of a highly ordered organosilane multilayer: new insights into the structure, bonding, and dynamics of self-assembling silane monolayers.
    Wen K; Maoz R; Cohen H; Sagiv J; Gibaud A; Desert A; Ocko BM
    ACS Nano; 2008 Mar; 2(3):579-99. PubMed ID: 19206585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide alpha-helices for synthetic nanostructures.
    Ryadnov MG
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):487-91. PubMed ID: 17511635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical comparison of self-assembling alpha- and beta-peptide nanostructures: toward design of beta-barrel frameworks.
    Beke T; Czajlik A; Bálint B; Perczel A
    ACS Nano; 2008 Mar; 2(3):545-53. PubMed ID: 19206581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wrinkled-up nanochannel networks: long-range ordering, scalability, and X-ray investigation.
    Malachias A; Mei Y; Annabattula RK; Deneke C; Onck PR; Schmidt OG
    ACS Nano; 2008 Aug; 2(8):1715-21. PubMed ID: 19206376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping nanostructure: a systematic enumeration of nanomaterials by assembling nanobuilding blocks at crystallographic positions.
    Sayle DC; Seal S; Wang Z; Mangili BC; Price DW; Karakoti AS; Kuchibhatla SV; Hao Q; Möbus G; Xu X; Sayle TX
    ACS Nano; 2008 Jun; 2(6):1237-51. PubMed ID: 19206342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular self-assembly from building blocks synthesized on a surface in ultrahigh vacuum: kinetic control and topo-chemical reactions.
    Weigelt S; Bombis C; Busse C; Knudsen MM; Gothelf KV; Laegsgaard E; Besenbacher F; Linderoth TR
    ACS Nano; 2008 Apr; 2(4):651-60. PubMed ID: 19206595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric field directed self-assembly of cuprous oxide nanostructures for photon sensing.
    Sahoo S; Husale S; Colwill B; Lu TM; Nayak S; Ajayan PM
    ACS Nano; 2009 Dec; 3(12):3935-44. PubMed ID: 19902963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mastering the complexity of DNA nanostructures.
    Brucale M; Zuccheri G; Samorì B
    Trends Biotechnol; 2006 May; 24(5):235-43. PubMed ID: 16542743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure prediction of an S-layer protein by the mean force method.
    Horejs C; Pum D; Sleytr UB; Tscheliessnig R
    J Chem Phys; 2008 Feb; 128(6):065106. PubMed ID: 18282077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of dendrimer-encapsulated nanoparticle arrays using 2-D microbial S-layer protein biotemplates.
    Mark SS; Bergkvist M; Yang X; Angert ER; Batt CA
    Biomacromolecules; 2006 Jun; 7(6):1884-97. PubMed ID: 16768411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyoxometalate-based layered structures for charge transport control in molecular devices.
    Douvas AM; Makarona E; Glezos N; Argitis P; Mielczarski JA; Mielczarski E
    ACS Nano; 2008 Apr; 2(4):733-42. PubMed ID: 19206605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized truxenes: adsorption and diffusion of single molecules on the KBr(001) surface.
    Such B; Trevethan T; Glatzel T; Kawai S; Zimmerli L; Meyer E; Shluger AL; Amijs CH; de Mendoza P; Echavarren AM
    ACS Nano; 2010 Jun; 4(6):3429-39. PubMed ID: 20499857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic engineering of the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 for the generation of functionalized nanoarrays.
    Badelt-Lichtblau H; Kainz B; Völlenkle C; Egelseer EM; Sleytr UB; Pum D; Ilk N
    Bioconjug Chem; 2009 May; 20(5):895-903. PubMed ID: 19402706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional sequential self-assembly of microscale objects.
    Onoe H; Matsumoto K; Shimoyama I
    Small; 2007 Aug; 3(8):1383-9. PubMed ID: 17594683
    [No Abstract]   [Full Text] [Related]  

  • 20. Monte Carlo study of the molecular mechanisms of surface-layer protein self-assembly.
    Horejs C; Mitra MK; Pum D; Sleytr UB; Muthukumar M
    J Chem Phys; 2011 Mar; 134(12):125103. PubMed ID: 21456703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.