These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 21375349)
1. Influence of K+ and Na+ ions on the aggregation processes of antibiotic amphotericin B: electronic absorption and FTIR spectroscopic studies. Gagoś M; Arczewska M J Phys Chem B; 2011 Mar; 115(12):3185-92. PubMed ID: 21375349 [TBL] [Abstract][Full Text] [Related]
2. Raman spectroscopic study of aggregation process of antibiotic amphotericin B induced by H+, Na+, and K+ ions. Gagoś M; Arczewska M; Gruszecki WI J Phys Chem B; 2011 May; 115(17):5032-6. PubMed ID: 21480620 [TBL] [Abstract][Full Text] [Related]
3. Molecular organization of antibiotic amphotericin B in dipalmitoylphosphatidylcholine monolayers induced by K(+) and Na(+) ions: the Langmuir technique study. Arczewska M; Gagoś M Biochim Biophys Acta; 2011 Nov; 1808(11):2706-13. PubMed ID: 21816134 [TBL] [Abstract][Full Text] [Related]
4. Effect of antibiotic amphotericin B on structural and dynamic properties of lipid membranes formed with egg yolk phosphatidylcholine. Hereć M; Islamov A; Kuklin A; Gagoś M; Gruszecki WI Chem Phys Lipids; 2007 Jun; 147(2):78-86. PubMed ID: 17481599 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic studies of molecular organization of antibiotic amphotericin B in monolayers and dipalmitoylphosphatidylcholine lipid multibilayers. Gagoś M; Arczewska M Biochim Biophys Acta; 2010 Nov; 1798(11):2124-30. PubMed ID: 20699086 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic studies of amphotericin B-Cu²+ complexes. Gagoś M; Czernel G; Kamiński DM; Kostro K Biometals; 2011 Oct; 24(5):915-22. PubMed ID: 21461949 [TBL] [Abstract][Full Text] [Related]
7. Anomalously high aggregation level of the polyene antibiotic amphotericin B in acidic medium: implications for the biological action. Gagoś M; Hereć M; Arczewska M; Czernel G; Dalla Serra M; Gruszecki WI Biophys Chem; 2008 Jul; 136(1):44-9. PubMed ID: 18472206 [TBL] [Abstract][Full Text] [Related]
8. An effect of antibiotic amphotericin B on ion transport across model lipid membranes and tonoplast membranes. Hereć M; Dziubińska H; Trebacz K; Morzycki JW; Gruszecki WI Biochem Pharmacol; 2005 Sep; 70(5):668-75. PubMed ID: 16023082 [TBL] [Abstract][Full Text] [Related]
9. Binding of antibiotic amphotericin B to lipid membranes: monomolecular layer technique and linear dichroism-FTIR studies. Gagoś M; Gabrielska J; Dalla Serra M; Gruszecki WI Mol Membr Biol; 2005; 22(5):433-42. PubMed ID: 16308277 [TBL] [Abstract][Full Text] [Related]
10. Ionic binding of Na+ versus K+ to the carboxylic acid headgroup of palmitic acid monolayers studied by vibrational sum frequency generation spectroscopy. Tang CY; Allen HC J Phys Chem A; 2009 Jul; 113(26):7383-93. PubMed ID: 19453122 [TBL] [Abstract][Full Text] [Related]
11. Na+, K+ and Cl- selectivity of the permeability pathways induced through sterol-containing membrane vesicles by amphotericin B and other polyene antibiotics. Hartsel SC; Benz SK; Ayenew W; Bolard J Eur Biophys J; 1994; 23(2):125-32. PubMed ID: 8050397 [TBL] [Abstract][Full Text] [Related]
12. The chain conformational order of ergosterol- or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: a FTIR study. Fournier I; Barwicz J; Auger M; Tancrède P Chem Phys Lipids; 2008 Jan; 151(1):41-50. PubMed ID: 17963699 [TBL] [Abstract][Full Text] [Related]
13. Effects of amphotericin B on ion transport proteins in airway epithelial cells. Jornot L; Rochat T; Caruso A; Lacroix JS J Cell Physiol; 2005 Sep; 204(3):859-70. PubMed ID: 15799030 [TBL] [Abstract][Full Text] [Related]
14. Amphotericin-B and monensin potentiation of murine erythropoiesis in vitro: a possible role for sodium ions. Tenaglia AN; Fry CG; Van Zant G Exp Hematol; 1985 Jul; 13(6):512-9. PubMed ID: 3996489 [TBL] [Abstract][Full Text] [Related]
15. Ionophoric properties of atropine: complexation and transport of Na+, K+, Mg2+ and Ca2+ ions across a liquid membrane. Rabi L; Moutaouakkil A; Blaghen M Nat Prod Res; 2008 Apr; 22(6):547-53. PubMed ID: 18415864 [TBL] [Abstract][Full Text] [Related]
16. FTIR spectroscopic study of molecular organization of the antibiotic amphotericin B in aqueous solution and in DPPC lipid monolayers containing the sterols cholesterol and ergosterol. Gagoś M; Arczewska M Eur Biophys J; 2012 Aug; 41(8):663-73. PubMed ID: 22832948 [TBL] [Abstract][Full Text] [Related]
17. Influence of a lipid bilayer on the conformational behavior of amphotericin B derivatives - A molecular dynamics study. Czub J; Neumann A; Borowski E; Baginski M Biophys Chem; 2009 Apr; 141(1):105-16. PubMed ID: 19185412 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic evidence for self-organization of N-iodoacetylamphotericin B in crystalline and amorphous phases. Gagoś M; Kamiński D; Arczewska M; Krajnik B; Maćkowski S J Phys Chem B; 2012 Oct; 116(42):12706-13. PubMed ID: 23030378 [TBL] [Abstract][Full Text] [Related]
19. Toward understanding of toxic side effects of a polyene antibiotic amphotericin B: fluorescence spectroscopy reveals widespread formation of the specific supramolecular structures of the drug. Wasko P; Luchowski R; Tutaj K; Grudzinski W; Adamkiewicz P; Gruszecki WI Mol Pharm; 2012 May; 9(5):1511-20. PubMed ID: 22506900 [TBL] [Abstract][Full Text] [Related]
20. Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic. Baginski M; Sternal K; Czub J; Borowski E Acta Biochim Pol; 2005; 52(3):655-8. PubMed ID: 16086075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]