BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21375480)

  • 41. Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice.
    Freitas AE; Egea J; Buendia I; Gómez-Rangel V; Parada E; Navarro E; Casas AI; Wojnicz A; Ortiz JA; Cuadrado A; Ruiz-Nuño A; Rodrigues ALS; Lopez MG
    Mol Neurobiol; 2016 Jul; 53(5):3030-3045. PubMed ID: 25966970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pramipexole is active in depression tests and modulates monoaminergic transmission, but not brain levels of BDNF in mice.
    Schulte-Herbrüggen O; Vogt MA; Hörtnagl H; Gass P; Hellweg R
    Eur J Pharmacol; 2012 Feb; 677(1-3):77-86. PubMed ID: 22206815
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-term adaptive changes induced by serotonergic antidepressant drugs.
    Faure C; Mnie-Filali O; Haddjeri N
    Expert Rev Neurother; 2006 Feb; 6(2):235-45. PubMed ID: 16466303
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The modulation of adult neuroplasticity is involved in the mood-improving actions of atypical antipsychotics in an animal model of depression.
    Morais M; Patrício P; Mateus-Pinheiro A; Alves ND; Machado-Santos AR; Correia JS; Pereira J; Pinto L; Sousa N; Bessa JM
    Transl Psychiatry; 2017 Jun; 7(6):e1146. PubMed ID: 28585931
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Therapeutic potential of serotonin 4 receptor for chronic depression and its associated comorbidity in the gut.
    Agrawal L; Korkutata M; Vimal SK; Yadav MK; Bhattacharyya S; Shiga T
    Neuropharmacology; 2020 Apr; 166():107969. PubMed ID: 31982703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment.
    Diniz CRAF; Casarotto PC; Resstel L; Joca SRL
    Neurosci Biobehav Rev; 2018 Jul; 90():70-83. PubMed ID: 29626490
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Stress, depression and cerebral plasticity: an update of clinical and experimental findings].
    Allilaire JF; Lôo H
    Bull Acad Natl Med; 2005 May; 189(5):845-50; discussion 850-1. PubMed ID: 16433456
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of GSK-3 in treatment-resistant depression and links with the pharmacological effects of lithium and ketamine: A review of the literature.
    Costemale-Lacoste JF; Guilloux JP; Gaillard R
    Encephale; 2016 Apr; 42(2):156-64. PubMed ID: 26995153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New drug targets in the signaling pathways activated by antidepressants.
    Páez-Pereda M
    Prog Neuropsychopharmacol Biol Psychiatry; 2005 Jul; 29(6):1010-6. PubMed ID: 15946780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The therapeutic potential of the endocannabinoid system for the development of a novel class of antidepressants.
    Hill MN; Hillard CJ; Bambico FR; Patel S; Gorzalka BB; Gobbi G
    Trends Pharmacol Sci; 2009 Sep; 30(9):484-93. PubMed ID: 19732971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The endocannabinoid system as a target for novel anxiolytic and antidepressant drugs.
    Gaetani S; Dipasquale P; Romano A; Righetti L; Cassano T; Piomelli D; Cuomo V
    Int Rev Neurobiol; 2009; 85():57-72. PubMed ID: 19607961
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 5-HT(4) receptors, a place in the sun: act two.
    Bockaert J; Claeysen S; Compan V; Dumuis A
    Curr Opin Pharmacol; 2011 Feb; 11(1):87-93. PubMed ID: 21342787
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 5-HT7 receptor antagonists as a new class of antidepressants.
    Mnie-Filali O; Lambás-Señas L; Zimmer L; Haddjeri N
    Drug News Perspect; 2007 Dec; 20(10):613-8. PubMed ID: 18301795
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Antidepressant drugs and central monoaminergic receptors].
    Asakura M; Tsukamoto T
    Yakubutsu Seishin Kodo; 1985 Dec; 5(4):303-19. PubMed ID: 2870595
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity.
    Kandola A; Ashdown-Franks G; Hendrikse J; Sabiston CM; Stubbs B
    Neurosci Biobehav Rev; 2019 Dec; 107():525-539. PubMed ID: 31586447
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Underlying mechanisms mediating the antidepressant effects of estrogens.
    Osterlund MK
    Biochim Biophys Acta; 2010 Oct; 1800(10):1136-44. PubMed ID: 19900508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands.
    Chilmonczyk Z; Bojarski AJ; Pilc A; Sylte I
    Int J Mol Sci; 2015 Aug; 16(8):18474-506. PubMed ID: 26262615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [New perspectives of the mechanism of action of antidepressants arised from genomic theory of depression].
    Cereseto M; Ferrero A
    Vertex; 2003; 14(51):30-5. PubMed ID: 12690407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants.
    Gorzalka BB; Hill MN
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Aug; 35(7):1575-85. PubMed ID: 21111017
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuronal plasticity: a link between stress and mood disorders.
    Calabrese F; Molteni R; Racagni G; Riva MA
    Psychoneuroendocrinology; 2009 Dec; 34 Suppl 1():S208-16. PubMed ID: 19541429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.