BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21375718)

  • 1. Functional analysis of the role of CggR (central glycolytic gene regulator) in Lactobacillus plantarum by transcriptome analysis.
    Rud I; Naterstad K; Bongers RS; Molenaar D; Kleerebezem M; Axelsson L
    Microb Biotechnol; 2011 May; 4(3):345-56. PubMed ID: 21375718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate.
    Doan T; Aymerich S
    Mol Microbiol; 2003 Mar; 47(6):1709-21. PubMed ID: 12622823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the gap operon from Lactobacillus plantarum and Lactobacillus sakei.
    Naterstad K; Rud I; Kvam I; Axelsson L
    Curr Microbiol; 2007 Mar; 54(3):180-5. PubMed ID: 17294332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon.
    Ludwig H; Homuth G; Schmalisch M; Dyka FM; Hecker M; Stülke J
    Mol Microbiol; 2001 Jul; 41(2):409-22. PubMed ID: 11489127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of the effector-binding domain of repressor Central glycolytic gene Regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates.
    Rezácová P; Kozísek M; Moy SF; Sieglová I; Joachimiak A; Machius M; Otwinowski Z
    Mol Microbiol; 2008 Aug; 69(4):895-910. PubMed ID: 18554327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.
    Vastano V; Perrone F; Marasco R; Sacco M; Muscariello L
    Arch Microbiol; 2016 Apr; 198(3):295-300. PubMed ID: 26546316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1.
    Zotta T; Ricciardi A; Guidone A; Sacco M; Muscariello L; Mazzeo MF; Cacace G; Parente E
    Int J Food Microbiol; 2012 Apr; 155(1-2):51-9. PubMed ID: 22326142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional analysis of galactomannooligosaccharides utilization by Lactobacillus plantarum WCFS1.
    Panwar D; Kapoor M
    Food Microbiol; 2020 Apr; 86():103336. PubMed ID: 31703861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the Lactobacillus plantarum malE gene is regulated by CcpA and a MalR-like protein.
    Muscariello L; Vastano V; Siciliano RA; Sacco M; Marasco R
    J Microbiol; 2011 Dec; 49(6):950-5. PubMed ID: 22203558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the glycolytic gapA operon in Bacillus subtilis: differential syntheses of proteins encoded by the operon.
    Meinken C; Blencke HM; Ludwig H; Stülke J
    Microbiology (Reading); 2003 Mar; 149(Pt 3):751-761. PubMed ID: 12634343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation.
    Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J
    Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of noncovalent mass spectrometry and traveling wave ion mobility spectrometry reveals sugar-induced conformational changes of central glycolytic genes repressor/DNA complex.
    Atmanene C; Chaix D; Bessin Y; Declerck N; Van Dorsselaer A; Sanglier-Cianferani S
    Anal Chem; 2010 May; 82(9):3597-605. PubMed ID: 20361740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the pyr operon of Lactobacillus plantarum is regulated by inorganic carbon availability through a second regulator, PyrR2, homologous to the pyrimidine-dependent regulator PyrR1.
    Arsène-Ploetze F; Kugler V; Martinussen J; Bringel F
    J Bacteriol; 2006 Dec; 188(24):8607-16. PubMed ID: 17041052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose-1,6-bisphosphate acts both as an inducer and as a structural cofactor of the central glycolytic genes repressor (CggR).
    Zorrilla S; Chaix D; Ortega A; Alfonso C; Doan T; Margeat E; Rivas G; Aymerich S; Declerck N; Royer CA
    Biochemistry; 2007 Dec; 46(51):14996-5008. PubMed ID: 18052209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unity in organisation and regulation of catabolic operons in Lactobacillus plantarum, Lactococcus lactis and Listeria monocytogenes.
    Andersson U; Molenaar D; Rådström P; de Vos WM
    Syst Appl Microbiol; 2005 Apr; 28(3):187-95. PubMed ID: 15900965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Lactobacillus plantarum ftsH gene is a novel member of the CtsR stress response regulon.
    Fiocco D; Collins M; Muscariello L; Hols P; Kleerebezem M; Msadek T; Spano G
    J Bacteriol; 2009 Mar; 191(5):1688-94. PubMed ID: 19074391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions.
    Russo P; De la Luz Mohedano M; Capozzi V; De Palencia PF; López P; Spano G; Fiocco D
    Int J Mol Sci; 2012; 13(9):10680-10696. PubMed ID: 23109816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling.
    Buntin N; Hongpattarakere T; Ritari J; Douillard FP; Paulin L; Boeren S; Shetty SA; de Vos WM
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27815279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA.
    Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM
    Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.