These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21375736)

  • 1. A structural constitutive model considering angular dispersion and waviness of collagen fibres of rabbit facial veins.
    Agianniotis A; Rezakhaniha R; Stergiopulos N
    Biomed Eng Online; 2011 Mar; 10():18. PubMed ID: 21375736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biaxial stretch can overcome discrepancy between global and local orientations of wavy collagen fibres.
    Turčanová M; Fischer J; Hermanová M; Bednařík Z; Skácel P; Burša J
    J Biomech; 2023 Dec; 161():111868. PubMed ID: 37976938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution.
    Weisbecker H; Unterberger MJ; Holzapfel GA
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.
    Gasser TC; Ogden RW; Holzapfel GA
    J R Soc Interface; 2006 Feb; 3(6):15-35. PubMed ID: 16849214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy.
    Rezakhaniha R; Agianniotis A; Schrauwen JT; Griffa A; Sage D; Bouten CV; van de Vosse FN; Unser M; Stergiopulos N
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):461-73. PubMed ID: 21744269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and histological characteristics of aortic dissection tissues.
    Li Z; Luo T; Wang S; Jia H; Gong Q; Liu X; Sutcliffe MP; Zhu H; Liu Q; Chen D; Xiong J; Teng Z
    Acta Biomater; 2022 Jul; 146():284-294. PubMed ID: 35367380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling.
    Niestrawska JA; Viertler C; Regitnig P; Cohnert TU; Sommer G; Holzapfel GA
    J R Soc Interface; 2016 Nov; 13(124):. PubMed ID: 27903785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of experimental evaluation of structural parameters for constitutive modelling of aorta.
    Fischer J; Turčanová M; Man V; Hermanová M; Bednařík Z; Burša J
    J Mech Behav Biomed Mater; 2023 Feb; 138():105615. PubMed ID: 36512975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural model of the venous wall considering elastin anisotropy.
    Rezakhaniha R; Stergiopulos N
    J Biomech Eng; 2008 Jun; 130(3):031017. PubMed ID: 18532866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon.
    Khayyeri H; Gustafsson A; Heuijerjans A; Matikainen MK; Julkunen P; Eliasson P; Aspenberg P; Isaksson H
    PLoS One; 2015; 10(6):e0126869. PubMed ID: 26030436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel computational remodelling algorithm for the probabilistic evolution of collagen fibre dispersion in biaxially strained vascular tissue.
    Çoban G; Çelebi MS
    Math Med Biol; 2017 Dec; 34(4):433-467. PubMed ID: 27614761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A validated 3D microstructure-based constitutive model of coronary artery adventitia.
    Chen H; Guo X; Luo T; Kassab GS
    J Appl Physiol (1985); 2016 Jul; 121(1):333-42. PubMed ID: 27174925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterisation of regional variations in the material properties of ureter according to microstructure.
    Sokolis DP
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1653-70. PubMed ID: 23439210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin.
    Ní Annaidh A; Bruyère K; Destrade M; Gilchrist MD; Maurini C; Otténio M; Saccomandi G
    Ann Biomed Eng; 2012 Aug; 40(8):1666-78. PubMed ID: 22427196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On strain-based rupture criterion for ascending aortic aneurysm: The role of fiber waviness.
    He X; Lu J
    Acta Biomater; 2022 Sep; 149():51-59. PubMed ID: 35760348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages.
    Jadidi M; Sherifova S; Sommer G; Kamenskiy A; Holzapfel GA
    Acta Biomater; 2021 Feb; 121():461-474. PubMed ID: 33279711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen fibre orientation in human bridging veins.
    Kapeliotis M; Gavrila Laic RA; Peñas AJ; Vander Sloten J; Vanden Berghe P; Famaey N; Depreitere B
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2455-2489. PubMed ID: 32535740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The layered structure of coronary adventitia under mechanical load.
    Chen H; Liu Y; Slipchenko MN; Zhao X; Cheng JX; Kassab GS
    Biophys J; 2011 Dec; 101(11):2555-62. PubMed ID: 22261042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.