These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21375966)

  • 1. [Comparison of in vivo characteristics of polyethylene wear particles produced by a metal and a ceramic femoral component in total knee replacement].
    Veigl D; Vavřík P; Pokorný D; Slouf M; Pavlova E; Landor I
    Acta Chir Orthop Traumatol Cech; 2011; 78(1):49-55. PubMed ID: 21375966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethylene wear particle generation in vivo in an alumina medial pivot total knee prosthesis.
    Minoda Y; Kobayashi A; Iwaki H; Miyaguchi M; Kadoya Y; Ohashi H; Takaoka K
    Biomaterials; 2005 Oct; 26(30):6034-40. PubMed ID: 15893371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matched-pair total knee arthroplasty retrieval analysis: oxidized zirconium vs. CoCrMo.
    Heyse TJ; Chen DX; Kelly N; Boettner F; Wright TM; Haas SB
    Knee; 2011 Dec; 18(6):448-52. PubMed ID: 20869251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An oxidized Zr ceramic surfaced femoral component for total knee arthroplasty.
    Laskin RS
    Clin Orthop Relat Res; 2003 Nov; (416):191-6. PubMed ID: 14646761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ceramic versus cobalt-chrome femoral components; wear of polyethylene insert in total knee prosthesis.
    Oonishi H; Ueno M; Kim SC; Oonishi H; Iwamoto M; Kyomoto M
    J Arthroplasty; 2009 Apr; 24(3):374-82. PubMed ID: 18524533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Third-body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study.
    Zietz C; Bergschmidt P; Lange R; Mittelmeier W; Bader R
    Int J Artif Organs; 2013 Jan; 36(1):47-55. PubMed ID: 23335379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased force simulator wear testing of a zirconium oxide total knee arthroplasty.
    Lee JK; Maruthainar K; Wardle N; Haddad F; Blunn GW
    Knee; 2009 Aug; 16(4):269-74. PubMed ID: 19321347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved wear performance with crosslinked UHMWPE and zirconia implants in knee simulation.
    Tsukamoto R; Chen S; Asano T; Ogino M; Shoji H; Nakamura T; Clarke IC
    Acta Orthop; 2006 Jun; 77(3):505-11. PubMed ID: 16819693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of metal and ceramic total hip bearing surfaces and their effect on long-term ultra high molecular weight polyethylene wear.
    Davidson JA
    Clin Orthop Relat Res; 1993 Sep; (294):361-78. PubMed ID: 8358943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated knee wear with cobalt chromium and oxidized zirconium knee femoral components.
    White SE; Whiteside LA; McCarthy DS; Anthony M; Poggie RA
    Clin Orthop Relat Res; 1994 Dec; (309):176-84. PubMed ID: 7994957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standardized analysis of UHMWPE wear particles from failed total joint arthroplasties.
    Mabrey JD; Afsar-Keshmiri A; Engh GA; Sychterz CJ; Wirth MA; Rockwood CA; Agrawal CM
    J Biomed Mater Res; 2002; 63(5):475-83. PubMed ID: 12209890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No difference in in vivo polyethylene wear particles between oxidized zirconium and cobalt-chromium femoral component in total knee arthroplasty.
    Minoda Y; Hata K; Iwaki H; Ikebuchi M; Hashimoto Y; Inori F; Nakamura H
    Knee Surg Sports Traumatol Arthrosc; 2014 Mar; 22(3):680-6. PubMed ID: 24141905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance assessment of femoral knee components made from cobalt-chromium alloy and oxidized zirconium.
    Brandt JM; Guenther L; O'Brien S; Vecherya A; Turgeon TR; Bohm ER
    Knee; 2013 Dec; 20(6):388-96. PubMed ID: 23583666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidized zirconium femoral components reduce polyethylene wear in a knee wear simulator.
    Ezzet KA; Hermida JC; Colwell CW; D'Lima DD
    Clin Orthop Relat Res; 2004 Nov; (428):120-4. PubMed ID: 15534531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iatrogenic surface damage during femoral component impaction in total knee arthroplasty.
    Vanlommel J; Porteous AJ; Hassaballa MA; Luyckx JP; Bellemans J
    Knee; 2010 Jan; 17(1):43-7. PubMed ID: 19666227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abrasive wear and metallosis associated with cross-linked polyethylene in total hip arthroplasty.
    O'Brien ST; Burnell CD; Hedden DR; Brandt JM
    J Arthroplasty; 2013 Jan; 28(1):197.e17-21. PubMed ID: 22770854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of scratch resistance of cobalt chromium alloy bearing surface, articulating against ultra-high molecular weight polyethylene, due to third-body wear particles.
    Mirghany M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):41-50. PubMed ID: 14982345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect on wear of lift-off in total knee arthroplasty.
    Todo S; Blunn GW; Harrison M; Freeman MA
    Biomed Mater Eng; 2003; 13(3):231-4. PubMed ID: 12883172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Clinical evaluation of the ceramic femoral component used for reconstruction of total knee replacement].
    Vavrík P; Landor I; Denk F
    Acta Chir Orthop Traumatol Cech; 2008 Dec; 75(6):436-42. PubMed ID: 19150000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Method for assessment of distribution of UHMWPE wear particles in periprosthetic tissues in total hip arthroplasty].
    Pokorný D; Slouf M; Horák Z; Jahoda D; Entlicher G; Eklová S; Sosna A
    Acta Chir Orthop Traumatol Cech; 2006 Aug; 73(4):243-50. PubMed ID: 17026883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.