These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21376059)

  • 1. Characterizing the existing and potential structural space of proteins by large-scale multiple loop permutations.
    Dai L; Zhou Y
    J Mol Biol; 2011 May; 408(3):585-95. PubMed ID: 21376059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution structure prediction of a circular permutation loop.
    Correia BE; Holmes MA; Huang PS; Strong RK; Schief WR
    Protein Sci; 2011 Nov; 20(11):1929-34. PubMed ID: 21898647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates.
    Yang Y; Faraggi E; Zhao H; Zhou Y
    Bioinformatics; 2011 Aug; 27(15):2076-82. PubMed ID: 21666270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CLAP: a web-server for automatic classification of proteins with special reference to multi-domain proteins.
    Gnanavel M; Mehrotra P; Rakshambikai R; Martin J; Srinivasan N; Bhaskara RM
    BMC Bioinformatics; 2014 Oct; 15(1):343. PubMed ID: 25282152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic analysis of short internal indels and their impact on protein folding.
    Kim R; Guo JT
    BMC Struct Biol; 2010 Aug; 10():24. PubMed ID: 20684774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A galaxy of folds.
    Alva V; Remmert M; Biegert A; Lupas AN; Söding J
    Protein Sci; 2010 Jan; 19(1):124-30. PubMed ID: 19937658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembling novel protein folds from super-secondary structural fragments.
    Jones DT; McGuffin LJ
    Proteins; 2003; 53 Suppl 6():480-5. PubMed ID: 14579336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CASP 11 target classification.
    Kinch LN; Li W; Schaeffer RD; Dunbrack RL; Monastyrskyy B; Kryshtafovych A; Grishin NV
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):20-33. PubMed ID: 26756794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generalized analysis of hydrophobic and loop clusters within globular protein sequences.
    Eudes R; Le Tuan K; Delettré J; Mornon JP; Callebaut I
    BMC Struct Biol; 2007 Jan; 7():2. PubMed ID: 17210072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evolution-based approach to De Novo protein design and case study on Mycobacterium tuberculosis.
    Mitra P; Shultis D; Brender JR; Czajka J; Marsh D; Gray F; Cierpicki T; Zhang Y
    PLoS Comput Biol; 2013 Oct; 9(10):e1003298. PubMed ID: 24204234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CATH hierarchy revisited-structural divergence in domain superfamilies and the continuity of fold space.
    Cuff A; Redfern OC; Greene L; Sillitoe I; Lewis T; Dibley M; Reid A; Pearl F; Dallman T; Todd A; Garratt R; Thornton J; Orengo C
    Structure; 2009 Aug; 17(8):1051-62. PubMed ID: 19679085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thoroughly sampling sequence space: large-scale protein design of structural ensembles.
    Larson SM; England JL; Desjarlais JR; Pande VS
    Protein Sci; 2002 Dec; 11(12):2804-13. PubMed ID: 12441379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal partitioning of the hierarchical fold network of 50-residue segments in proteins.
    Ito J; Sonobe Y; Ikeda K; Tomii K; Higo J
    BMC Struct Biol; 2009 May; 9():34. PubMed ID: 19454039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Camps 2.0: exploring the sequence and structure space of prokaryotic, eukaryotic, and viral membrane proteins.
    Neumann S; Hartmann H; Martin-Galiano AJ; Fuchs A; Frishman D
    Proteins; 2012 Mar; 80(3):839-57. PubMed ID: 22213543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new size-independent score for pairwise protein structure alignment and its application to structure classification and nucleic-acid binding prediction.
    Yang Y; Zhan J; Zhao H; Zhou Y
    Proteins; 2012 Aug; 80(8):2080-8. PubMed ID: 22522696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target domain definition and classification in CASP8.
    Tress ML; Ezkurdia I; Richardson JS
    Proteins; 2009; 77 Suppl 9(Suppl 9):10-7. PubMed ID: 19603487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based prediction of DNA-binding proteins by structural alignment and a volume-fraction corrected DFIRE-based energy function.
    Zhao H; Yang Y; Zhou Y
    Bioinformatics; 2010 Aug; 26(15):1857-63. PubMed ID: 20525822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of features for catalytic residue prediction in novel folds.
    Youn E; Peters B; Radivojac P; Mooney SD
    Protein Sci; 2007 Feb; 16(2):216-26. PubMed ID: 17189479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated prediction of CASP-5 structures using the Robetta server.
    Chivian D; Kim DE; Malmström L; Bradley P; Robertson T; Murphy P; Strauss CE; Bonneau R; Rohl CA; Baker D
    Proteins; 2003; 53 Suppl 6():524-33. PubMed ID: 14579342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.