These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21376075)

  • 1. Second-order Mach bands: chromatic and achromatic.
    Tsofe A; Spitzer H
    Vision Res; 2011 May; 51(9):1109-15. PubMed ID: 21376075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the chromatic Mach bands effect exist?
    Tsofe A; Spitzer H; Einav S
    J Vis; 2009 Jun; 9(6):20.1-29. PubMed ID: 19761311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of chromatic and luminance information on reaction times.
    O'Donell BM; Barraza JF; Colombo EM
    Vis Neurosci; 2010 Jul; 27(3-4):119-29. PubMed ID: 20594382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perceived duration of chromatic and achromatic light.
    Kojima H; Kawabata Y
    Vision Res; 2012 Jan; 53(1):21-9. PubMed ID: 22133595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global motion processing in human color vision: a deficit for second-order stimuli.
    Garcia-Suarez L; Mullen KT
    J Vis; 2010 Dec; 10(14):20. PubMed ID: 21163953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational adaptation model and its predictions for color induction of first and second orders.
    Spitzer H; Barkan Y
    Vision Res; 2005 Dec; 45(27):3323-42. PubMed ID: 16169037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mach bands and multiscale models of spatial vision: the role of first, second, and third derivative operators in encoding bars and edges.
    Wallis SA; Georgeson MA
    J Vis; 2012 Dec; 12(13):18. PubMed ID: 23262150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achromatic parvocellular contrast gain in normal and color defective observers: Implications for the evolution of color vision.
    Lutze M; Pokorny J; Smith VC
    Vis Neurosci; 2006; 23(3-4):611-6. PubMed ID: 16962004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Misperceptions of speed for chromatic and luminance grating stimuli.
    Burton MP; McKeefry DJ
    Vision Res; 2007 May; 47(11):1504-17. PubMed ID: 17395238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using color to understand perceived lightness.
    Anderson BL; Khang BG; Kim J
    J Vis; 2011 Nov; 11(13):19. PubMed ID: 22106099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise.
    Beaudot WH; Mullen KT
    Vision Res; 2005 Mar; 45(6):687-96. PubMed ID: 15639495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of contrast intensity and polarity in the achromatic watercolor effect.
    Cao B; Yazdanbakhsh A; Mingolla E
    J Vis; 2011 Mar; 11(3):. PubMed ID: 21436347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation.
    Mullen KT; Dumoulin SO; McMahon KL; de Zubicaray GI; Hess RF
    Eur J Neurosci; 2007 Jan; 25(2):491-502. PubMed ID: 17284191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatic Vasarely effect.
    Tsofe A; Yucht Y; Beyil J; Einav S; Spitzer H
    Vision Res; 2010 Oct; 50(22):2284-94. PubMed ID: 20619286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential aging of chromatic and achromatic visual pathways: behavior and electrophysiology.
    Page JW; Crognale MA
    Vision Res; 2005 May; 45(11):1481-9. PubMed ID: 15743617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of spatial attention and salience cues on chromatic and achromatic motion processing.
    Dobkins KR; Rezec AA; Krekelberg B
    Vision Res; 2007 Jun; 47(14):1893-906. PubMed ID: 17445859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The detection of motion in chromatic stimuli: first-order and second-order spatial structure.
    Cropper SJ
    Vision Res; 2005 Mar; 45(7):865-80. PubMed ID: 15644227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining achromatic and chromatic cues to transparency.
    Fulvio JM; Singh M; Maloney LT
    J Vis; 2006 Jul; 6(8):760-76. PubMed ID: 16895457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'Double-blindsight' revealed through the processing of color and luminance contrast defined motion signals.
    Barbur JL
    Prog Brain Res; 2004; 144():243-59. PubMed ID: 14650853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.