BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 21376368)

  • 1. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid.
    Philips J; Springael D; Smolders E
    Chemosphere; 2011 May; 83(7):991-6. PubMed ID: 21376368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.
    Haest PJ; Springael D; Seuntjens P; Smolders E
    Chemosphere; 2012 Nov; 89(11):1369-75. PubMed ID: 22749126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron donor limitations reduce microbial enhanced trichloroethene DNAPL dissolution: a flux-based analysis using diffusion-cells.
    Philips J; Van Muylder R; Springael D; Smolders E
    Chemosphere; 2013 Mar; 91(1):7-13. PubMed ID: 23228910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: experimental evaluation and modeling.
    Philips J; Miroshnikov A; Haest PJ; Springael D; Smolders E
    J Contam Hydrol; 2014 Dec; 170():28-38. PubMed ID: 25306502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.
    Philips J; Maes N; Springael D; Smolders E
    J Contam Hydrol; 2013 Apr; 147():25-33. PubMed ID: 23500838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L; Smolders E
    Chemosphere; 2015 Jan; 119():1113-1119. PubMed ID: 25460750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation product partitioning in source zones containing chlorinated ethene dense non-aqueous-phase liquid.
    Ramsburg CA; Thornton CE; Christ JA
    Environ Sci Technol; 2010 Dec; 44(23):9105-11. PubMed ID: 21053958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks.
    Schaefer CE; Towne RM; Vainberg S; McCray JE; Steffan RJ
    Environ Sci Technol; 2010 Jul; 44(13):4958-64. PubMed ID: 20524648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV
    J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants.
    Suchomel EJ; Ramsburg CA; Pennell KD
    J Contam Hydrol; 2007 Dec; 94(3-4):195-214. PubMed ID: 17628205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of aerobic metabolic cis-1,2-di-chloroethene biodegradation by other chloroethenes.
    Zhao HP; Schmidt KR; Tiehm A
    Water Res; 2010 Apr; 44(7):2276-82. PubMed ID: 20079512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of a dechlorinating community in relation to the distance from a trichloroethene dense nonaqueous phase liquid in a model aquifer.
    Philips J; Hamels F; Smolders E; Springael D
    FEMS Microbiol Ecol; 2012 Sep; 81(3):636-47. PubMed ID: 22512272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor.
    Yu S; Semprini L
    J Hazard Mater; 2009 Aug; 167(1-3):97-104. PubMed ID: 19179006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of biomass accumulation on microbially enhanced dissolution of a PCE pool: a numerical simulation.
    Chu M; Kitanidis PK; McCarty PL
    J Contam Hydrol; 2003 Aug; 65(1-2):79-100. PubMed ID: 12855202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.
    Harkness M; Fisher A
    J Contam Hydrol; 2013 Aug; 151():16-33. PubMed ID: 23697993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G.
    Zhao S; He J
    FEMS Microbiol Ecol; 2019 Jan; 95(1):. PubMed ID: 30339222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.
    Seyedabbasi MA; Newell CJ; Adamson DT; Sale TC
    J Contam Hydrol; 2012 Jun; 134-135():69-81. PubMed ID: 22591740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.