These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 21376562)
1. Optical analysis of lactate dehydrogenase and glucose by CdTe quantum dots and their dual simultaneous detection. Yang L; Ren X; Meng X; Li H; Tang F Biosens Bioelectron; 2011 Apr; 26(8):3488-93. PubMed ID: 21376562 [TBL] [Abstract][Full Text] [Related]
2. Enzyme biosensor based on NAD-sensitive quantum dots. Ren X; Yang L; Tang F; Yan C; Ren J Biosens Bioelectron; 2010 Sep; 26(1):271-4. PubMed ID: 20627509 [TBL] [Abstract][Full Text] [Related]
3. A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Cao L; Ye J; Tong L; Tang B Chemistry; 2008; 14(31):9633-40. PubMed ID: 18792902 [TBL] [Abstract][Full Text] [Related]
4. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Tang B; Cao L; Xu K; Zhuo L; Ge J; Li Q; Yu L Chemistry; 2008; 14(12):3637-44. PubMed ID: 18318025 [TBL] [Abstract][Full Text] [Related]
5. A sensitive quantum dots-based "OFF-ON" fluorescent sensor for ruthenium anticancer drugs and ctDNA. Huang S; Zhu F; Qiu H; Xiao Q; Zhou Q; Su W; Hu B Colloids Surf B Biointerfaces; 2014 May; 117():240-7. PubMed ID: 24657609 [TBL] [Abstract][Full Text] [Related]
6. H(2) O(2) - and pH-sensitive CdTe quantum dots as fluorescence probes for the detection of glucose. Li Y; Li B; Zhang J Luminescence; 2013; 28(5):667-72. PubMed ID: 22941960 [TBL] [Abstract][Full Text] [Related]
7. Disposable electrochemiluminescent biosensor using bidentate-chelated CdTe quantum dots as emitters for sensitive detection of glucose. Cheng L; Deng S; Lei J; Ju H Analyst; 2012 Jan; 137(1):140-4. PubMed ID: 22034620 [TBL] [Abstract][Full Text] [Related]
8. Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. Deng Z; Zhang Y; Yue J; Tang F; Wei Q J Phys Chem B; 2007 Oct; 111(41):12024-31. PubMed ID: 17887667 [TBL] [Abstract][Full Text] [Related]
9. Detection of DNA using an "off-on" switch of a regenerating biosensor based on an electron transfer mechanism from glutathione-capped CdTe quantum dots to nile blue. Shen Y; Liu S; Kong L; Tan X; He Y; Yang J Analyst; 2014 Nov; 139(22):5858-67. PubMed ID: 25221793 [TBL] [Abstract][Full Text] [Related]
10. Tunneling of redox enzymes to design nano-probes for monitoring NAD(+) dependent bio-catalytic activity. Akshath US; Bhatt P Biosens Bioelectron; 2016 Nov; 85():240-246. PubMed ID: 27179565 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence enhancement of CdTe quantum dots by HBcAb-HRP for sensitive detection of H Gong T; Liu J; Wu Y; Xiao Y; Wang X; Yuan S Biosens Bioelectron; 2017 Jun; 92():16-20. PubMed ID: 28167414 [TBL] [Abstract][Full Text] [Related]
12. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Li X; Zhou Y; Zheng Z; Yue X; Dai Z; Liu S; Tang Z Langmuir; 2009 Jun; 25(11):6580-6. PubMed ID: 19260661 [TBL] [Abstract][Full Text] [Related]
13. Highly sensitive fluorescence biosensors for sparfloxacin detection at nanogram level based on electron transfer mechanism of cadmium telluride quantum dots. Liang W; Liu S; Song J; Hao C; Wang L; Li D; He Y Biotechnol Lett; 2015 May; 37(5):1057-61. PubMed ID: 25604522 [TBL] [Abstract][Full Text] [Related]
14. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate. Wang L; Liu S; Liang W; Li D; Yang J; He Y J Colloid Interface Sci; 2015 Jun; 448():257-64. PubMed ID: 25744859 [TBL] [Abstract][Full Text] [Related]
15. CdTe quantum dots as a novel biosensor for Serratia marcescens and Lipopolysaccharide. Ebrahim Sh; Reda M; Hussien A; Zayed D Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():212-9. PubMed ID: 26051643 [TBL] [Abstract][Full Text] [Related]
16. Quantum dots as nano plug-in's for efficient NADH resonance energy routing. Akshath US; Vinayaka AC; Thakur MS Biosens Bioelectron; 2012; 38(1):411-5. PubMed ID: 22651966 [TBL] [Abstract][Full Text] [Related]
17. Detection of glutathione with an "off-on" fluorescent biosensor based on N-acetyl-L-cysteine capped CdTe quantum dots. Tan X; Yang J; Li Q; Yang Q Analyst; 2015 Oct; 140(19):6748-57. PubMed ID: 26332659 [TBL] [Abstract][Full Text] [Related]
18. Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release. Zhang X; Ding S; Cao S; Zhu A; Shi G Biosens Bioelectron; 2016 Jun; 80():315-322. PubMed ID: 26852200 [TBL] [Abstract][Full Text] [Related]
19. A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence "turn on-off" nanosensor for lysozyme detection. Song Y; Li Y; Liu Z; Liu L; Wang X; Su X; Ma Q Biosens Bioelectron; 2014 Nov; 61():9-13. PubMed ID: 24841088 [TBL] [Abstract][Full Text] [Related]
20. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Yuan J; Guo W; Yin J; Wang E Talanta; 2009 Mar; 77(5):1858-63. PubMed ID: 19159810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]