These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 21376732)

  • 61. Bats perceptually weight prey cues across sensory systems when hunting in noise.
    Gomes DG; Page RA; Geipel I; Taylor RC; Ryan MJ; Halfwerk W
    Science; 2016 Sep; 353(6305):1277-80. PubMed ID: 27634533
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Variability in echolocation call intensity in a community of horseshoe bats: a role for resource partitioning or communication?
    Schuchmann M; Siemers BM
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20862252
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Acoustic mirror effect increases prey detection distance in trawling bats.
    Siemers BM; Baur E; Schnitzler HU
    Naturwissenschaften; 2005 Jun; 92(6):272-6. PubMed ID: 15871000
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Niche-specific cognitive strategies: object memory interferes with spatial memory in the predatory bat Myotis nattereri.
    Hulgard K; Ratcliffe JM
    J Exp Biol; 2014 Sep; 217(Pt 18):3293-300. PubMed ID: 25013105
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ridge number in bat ears is related to both guild membership and ear length.
    Keeley BW; Keeley ATH; Houlahan P
    PLoS One; 2018; 13(7):e0200255. PubMed ID: 30044815
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Acoustic camouflage increases with body size and changes with bat echolocation frequency range in a community of nocturnally active Lepidoptera.
    Simon R; Dreissen A; Leroy H; Berg MP; Halfwerk W
    J Anim Ecol; 2023 Dec; 92(12):2363-2372. PubMed ID: 37882060
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis.
    Geipel I; Jung K; Kalko EK
    Proc Biol Sci; 2013 Mar; 280(1754):20122830. PubMed ID: 23325775
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bat noseleaf model: echolocation function, design considerations, and experimental verification.
    Kuc R
    J Acoust Soc Am; 2011 May; 129(5):3361-6. PubMed ID: 21568436
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles.
    Schoeman MC; Jacobs DS
    Oecologia; 2011 Jun; 166(2):493-506. PubMed ID: 21128085
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Variation in the resting frequency of Rhinolophus pusillus in Mainland China: effect of climate and implications for conservation.
    Jiang T; Metzner W; You Y; Liu S; Lu G; Li S; Wang L; Feng J
    J Acoust Soc Am; 2010 Oct; 128(4):2204-11. PubMed ID: 20968390
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An experimental test of the allotonic frequency hypothesis to isolate the effects of light pollution on bat prey selection.
    Bailey LA; Brigham RM; Bohn SJ; Boyles JG; Smit B
    Oecologia; 2019 Jun; 190(2):367-374. PubMed ID: 31139944
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Qualitative and quantitative analyses of the echolocation strategies of bats on the basis of mathematical modelling and laboratory experiments.
    Aihara I; Fujioka E; Hiryu S
    PLoS One; 2013; 8(7):e68635. PubMed ID: 23861930
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The influence of feeding on the evolution of sensory signals: a comparative test of an evolutionary trade-off between masticatory and sensory functions of skulls in southern African horseshoe bats (Rhinolophidae).
    Jacobs DS; Bastian A; Bam L
    J Evol Biol; 2014 Dec; 27(12):2829-40. PubMed ID: 25393780
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hearing sensitivity: An underlying mechanism for niche differentiation in gleaning bats.
    Geipel I; Lattenkamp EZ; Dixon MM; Wiegrebe L; Page RA
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34426521
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sensorimotor model of bat echolocation and prey capture.
    Kuc R
    J Acoust Soc Am; 1994 Oct; 96(4):1965-78. PubMed ID: 7963018
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Genomes of Two Bat Species with Long Constant Frequency Echolocation Calls.
    Dong D; Lei M; Hua P; Pan YH; Mu S; Zheng G; Pang E; Lin K; Zhang S
    Mol Biol Evol; 2017 Jan; 34(1):20-34. PubMed ID: 27803123
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Frequency discrimination threshold at search call frequencies in the echolocating bat, Eptesicus fuscus.
    von Stebut B; Schmidt S
    J Comp Physiol A; 2001 May; 187(4):287-91. PubMed ID: 11467501
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bidirectional Echolocation in the Bat Barbastella barbastellus: Different Signals of Low Source Level Are Emitted Upward through the Nose and Downward through the Mouth.
    Seibert AM; Koblitz JC; Denzinger A; Schnitzler HU
    PLoS One; 2015; 10(9):e0135590. PubMed ID: 26352271
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sensory biology: listening in the dark for echoes from silent and stationary prey.
    Jones G
    Curr Biol; 2013 Mar; 23(6):R249-51. PubMed ID: 23518059
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Morphological correlates of echolocation frequency in the endemic Cape horseshoe bat, Rhinolophus capensis (Chiroptera: Rhinolophidae).
    Odendaal LJ; Jacobs DS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):435-46. PubMed ID: 21052683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.